Kazimirov E.T.

egorcasual@yandex.ru

Stratigraphy and lithology
Article # 40_2024 submitted on 10/23/2024 displayed on website on 12/20/2024
17 p.
pdf Dolomitization mechanisms of the Middle Triassic Kurrachine Dolomite Formation, Palmyrides (Syria)
Comprehensive research of the properties and structure of productive Middle Triassic section of the Kurrachine Dolomite Formation in the Palmyra Rift Basin is currently of remarkable importance for the petroleum activity in Syria.
In this study, the main rock types, associated sedimentary environment and dolomitization mechanisms were identified. The void space distribution in the studied rocks basically depends on the sedimentation settings that control early diagenetic dolomitization processes. Within the sabkhas and lagoons, non-porous microcrystalline dolomites were formed by recrystallization of mud material. In shallow marine environments with an active hydrodynamic regime (peloid banks and microbial mounds), the distribution of primary voids generally preserved during pervasive early diagenetic dolomitization which led to the formation of extremely fine-to-fine and fine-to-medium crystalline dolomites. Tectonic cracks observed in the rocks were filled with saddle dolomite cement, which subsequently occluded their connectivity. Mineralization of fracture occurred by deep burial diagenesis due to transformations of clay minerals from the underlying Amanous Shale Formation source rocks, as a result of the development of Palmyra folding.
Accordingly, it is suggested that the main reservoirs of the Kurrachine Dolomite Formation are not predominantly confined to fracture zones, but rather to areas of intercrystalline porosity development of the dolomites in specific facies zones.

Keywords: dolomitization, Kurrachine Dolomite Formation, Triassic, Palmyrides, Syria.
article citation Ghazaleh R., Kazimirov E.T. Dolomitization mechanisms of the Middle Triassic Kurrachine Dolomite Formation, Palmyrides (Syria). Neftegazovaya Geologiya. Teoriya I Praktika, 2024, vol. 19, no. 4, available at: https://www.ngtp.ru/rub/2024/40_2024.html EDN: LRCXZV
References
Adabi M.H. Multistage dolomitization of Upper Jurassic Mozduran Formation, Kopet-Dagh Basin, n.e. Iran. Carbonates and Evaporites, Springer, 2009, vol. 24, no. 1, pp. 16-32. DOI: 10.1007/BF03228054
Amthor J.E., Friedman G.M. Early- to late-diagenetic dolomitization of platform carbonates; Lower Ordovician Ellenburger Group, Permian Basin, West Texas. Journal of Sedimentary Research, 1992, vol. 62, no. 1, pp. 131-144. DOI: 10.1306/D42678AC-2B26-11D7-8648000102C1865D
Badiozamani K. The Dorag Dolomitization Model, Application to the Middle Ordovician of Wisconsin. Journal of Sedimentary Research, 1973, vol. 43, no. 4. pp. 965-984. DOI: 10.1306/74D728C9-2B21-11D7-8648000102C1865D
Baniak G.M., Amskold L., Konhauser K.O., Muehlenbachs K., Pemberton S.G., Gingras M.K. Sabkha and burrow-mediated dolomitization in the Mississippian Debolt Formation, northwestern Alberta, Canada. Ichnos, 2014, vol. 21, no. 3, pp. 158-174. DOI: 10.1080/10420940.2014.930036
Barazangi M., Seber D., Chaimov T., Best J., Litak R. Tectonic evolution of the northern Arabian plate in western Syria. In: Boschi E., Mantovani E., Morelli A. (eds) Recent evolution and seismicity of the Mediterranean Region. Kluwer Academic Publishers, NATO ASI Series, The Netherlands, 1993, pp. 117-140. DOI: 10.1007/978-94-011-2016-6_5
Boles J.R., Franks S.G. Clay digenesis in Wilcox sandstones of Southwest Texas; implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology, 1979, vol. 49, no. 1, pp. 55-70. DOI: 10.1306/212F76BC-2B24-11D7-8648000102C1865D
Brew G., Barazangi M., Al-Maleh A.Kh., Sawaf T. Tectonic and geological evolution of Syria. GeoArabia, 2001, vol. 6, no. 3, pp. 573-616. DOI: 10.2113/geoarabia0604573a
Carbonate Sedimentology. Tucker M.E., Wright V.P.: with а chapter by Dickson J.A.D. Oxford: Blackwell Scientific Ltd, 1990, 482 p. DOI: 10.1002/9781444314175
Chaimov T.A., Barazangi M., Al-Saad D., Sawaf T., Gebran A. Mesozoic and Cenozoic deformation inferred from seismic stratigraphy in the southwestern intracontinental Palmyride foldthrust belt, Syria. Geological Society of American Bulletin, 1992, vol. 104, no. 6, pp. 704-715. DOI: 10.1130/0016-7606(1992)104%3C0704:MACDIF%3E2.3.CO;2
Chatalov A.G. Flowchart for micropetrographic description and classification of dolostones. Carbonates and Evaporites, 2013, vol. 28, pp. 447-456. DOI: 10.1007/s13146-013-0140-y
Davies G.R., Smith Jr L.B. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, 2006, vol. 90, no. 11, pp. 1641-1690.‏ DOI: 10.1306/05220605164
Deffeyes K.S., Lucia F.J., Weyl P.K. Dolomitization of recent and Plio-Pleistocene sediments by marine evaporate waters on Bonaire, Netherlands Antilles, in dolomitization and limestone diagenesis. Edited by Pray L.C. and Murray R.C. The Society of Economic Paleontologists and Mineralogists (SEPM), 1965, vol. 13, pp. 71-88. DOI: 10.2110/pec.65.07.0071
Eren M. Smectite to illite conversion: A review and a case study on Atoka shales in Eddy County, New Mexico USA. Geosound, 2000, vol. 36, no. 1, pp. 1-14.
Gazale R. Obstanovki osadkonakopleniya formatsii Kurrachayn-Dolomit Pal'mirskogo basseyna Sirii [Sedimentary environments of the Kurrachine-Dolomite Formation of the Palmyra Basin, Syria]. Neft' i gaz - 2024: 78-ya mezhdunarodnaya molodezhnaya nauchnaya konferentsiya (Moscow, 22-26 Apr 2024). RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2024, pp. 60-61, available at: https://neftegaz.gubkin.ru/archive/neft-i-gaz-2024/itogi-foruma/ (in Russ.).
Gazale R., Kazimirov E.T., Postnikov A.V. Srednetriasovye stromatolity formatsii Kurrachayn-Dolomit Pal'mirskogo basseyna Sirii [Middle Triassic stromatolithe of the Kurrachine-Dolomite Formation in Palmyra Basin, Syria]. Trudy RGU nefti i gaza imeni I.M. Gubkina, 2023, no. 4 (309), pp. 34-49 (in Russ.). DOI: 10.33285/2073-9028-2023-1(310)-34-49
Kendall C.G.St.C., Alsharhan A.S., Whittle G.L. The flood re-charge sabkha model supported by recent inversions of anhydrite to gypsum in the UAE Sabkhas. In Quaternary deserts and climatic change. CRC Press, London, 2020, pp. 29-42. DOI: 10.1201/9781003077862
Kinsman D.J Modes of formation, sedimentary associations, and diagnostic features of shallow-water and supratidal evaporites. AAPG Bulletin, 1969, vol. 53, no. 4, pp. 830-840. DOI: 10.1306/5D25C801-16C1-11D7-8645000102C1865D
Land L.S. The Origin of Massive Dolomite. Journal of Geological Education, 1985. vol. 33, no. 2, pp. 112-125. DOI: 10.5408/0022-1368-33.2.112
Lučić D., Ivković Ž., Foršek G., Takač D., Bubnić J., Koch G. Depositional sequences and palynology of Triassic carbonate-evaporite platform deposits in the Palmyrides, Syria. Geological Society, London, 2010, vol. 329, no. 1, pp. 43-63. DOI: 10.1144/sp329.3
Magaritz M., Peryt T.M. Mixed evaporative and meteoric water dolomitization: isotope study of the Zechstein Limestone (Upper Permian), southwestern Poland. Sedimentary Geology, 1994, vol. 92, no. 3-4, pp. 257-272. DOI: 10.1016/0037-0738(94)90109-0
Mazzullo S.J. Geochemical and neomorphic alteration of dolomite: A review. Carbonates and Evaporites, Springer, 1992, vol. 7, pp. 21-37. DOI: 10.1007/BF03175390
McKenzie J.A., Hsu K.J., Schneider J.F. Movement of subsurface waters under the sabkha, Abu Dhabi, UAE, and its relation to evaporative dolomite genesis. In: Zenger D.H., Dunham J.B. and Ethington R.L. (eds) Concepts and models of dolomitization. SEPM Special Publication, 1980, pp. 11-30. DOI: 10.2110/pec.80.28.0011
Melim L.A. The origin of dolomite in the Permian (Guadalupian) Capitan Formation, Delaware Basin, west Texas and New Mexico: implications for dolomitization models. Southern Methodist University‏, 1991.
Müller D.W., McKenzie J.A., Mueller P.A. Abu Dhabi sabkha, Persian Gulf, revisited: Application of strontium isotopes to test an early dolomitization model. Geology, 1990, vol. 18, no. 7, pp. 618-621. DOI: 10.1130/0091-7613(1990)018%3C0618:ADSPGR%3E2.3.CO;2
Murray R.C., Lucia F.J. Cause and control of dolomite distribution by rock selectivity. GSA Bulletin, 1967, vol. 78, no. 1, pp. 21-36. DOI: 10.1130/0016-7606(1967)78[21:CACODD]2.0.CO;2
Patterson R., Kinsman J. Formation of diagenetic dolomite in coastal sabkha along Arabian (Persian) Gulf. AAPG Bulletin, 1982, vol. 66, no. 1, pp. 28-43. DOI: 10.1306/03B59A17-16D1-11D7-8645000102C1865D
Saeed W. Assessment of saltwater origin in the Rub’ al-Khali basin and its relation to the formation of sabkha Matti. PhD thesis. Ontario, Canada: University of Waterloo, 2020, 125 p, available at: http://hdl.handle.net/10012/16670
Searle M.P. Structure of the intraplate eastern Palmyride Fold Belt, Syria. Geological Society of America Bulletin, 1994, vol. 106, no. 10, pp. 1332-1350. DOI: 10.1130/0016-7606(1994)106%3C1332:SOTIEP%3E2.3.CO;2
Sedimentary Geochemistry. Adabi M.H. Iran: Arianzamin Publication, 2nd edition, 2011, 503 p (in Persian).
Sibley D.F. The origin of common dolomite fabrics, clues from the Pliocene. Journal of Sedimentary Petrology, 1982, vol. 52, no. 4, pp. 1087-1100. DOI: 10.1306/212F80DF-2B24-11D7-8648000102C1865D
Sibley D.F., Gregg J.M. Classification of dolomite rock textures. Journal of Sedimentary Research, 1987, vol. 57, no. 6, pp. 967-975.‏ DOI: 10.1306/212F8CBA-2B24-11D7-8648000102C1865D
The Persian Gulf: Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Purser B.H. Berlin, Heidelberg, New York: Springer-Verlag, 1st edition, 1973, 474 p. DOI: 10.1007/978-3-642-65545-6
Warren J.K., Kendall C.G.St.C. Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) settings-modern and ancient. AAPG Bulletin, 1985, vol. 69, no. 6, pp. 1013-1023.‏ DOI: 10.1306/AD462B46-16F7-11D7-8645000102C1865D
Wright V.P. Peritidal carbonate facies models: A review. Geological Journal, 1984, vol. 19, no. 4, pp. 309-325. DOI: 10.1002/gj.3350190402