Hard-extracted reserves, unconventional hydrocarbon sources
Section editor – PhD in geology and mineralogy Petukhov A.V.
Article # 10_2018 submitted on 03/12/2018 displayed on website on 03/30/2018
25 p.
pdf  Сleavage fabric – significant faсtor creating discrete hydrocarbon migration pathways in diagenetic to low metamorphic pelites
*The article is presented in English.
From the point of view of petroleum geology, the transformation experienced by pelitic rocks with petroleum potential in the regional burial process in the domain of diagenesis to low metamorphism past a certain point can by a significant risk factor - an important reduction of porosity-permeability, petroleum pathways disturbing, and over maturation of organic matter. The cleavage structures developed during the conversion into the new structural conditions can even produce open space volumes with crenulation distance spaces varying in the presented areas from 20 to 150 micrometers, spaces that could constitute discrete pathways for a variety of fluids. Certain terrains with a favourable petrogenetic profile (pelitic rocks with cleavage development and temperatures conditions not exceeding 100-150°C) may be considered as potential petroleum discrete pathways. For petroleum prospecting activity the previously described terrains could represent a possible interesting areas.

Keywords: pelitic rocks, crenulation distance space, cleavage fabric, discrete pathways for petroleum fluids, potential petroleum bearing area.
article citation Morariu D., Averyanova O.Yu. Сleavage fabric – significant faсtor creating discrete hydrocarbon migration pathways in diagenetic to low metamorphic pelites. Neftegazovaya Geologiya. Teoriya I Praktika, 2018, vol. 13, no. 1, available at: http://www.ngtp.ru/rub/9/10_2018.pdf
DOI https://doi.org/10.17353/2070-5379/10_2018
   Bjorlykke, K., J. Jahren, N.H. Mondol, O. Marcussen, D. Croize, C. Peltonen, and B. Thyberg, 2009, Sediment Compaction and Rock. Properties: S&D Article #50192. Web accessed 27 October 2010. http://www.searchanddiscovery.net/documents/2009/50192bjorlykke/index.htm
   Bridge J.S., and R.V. Demicco, 2008, Earth surface processes, landforms and sediment deposits: New York, Cambridge University Press, 830 p.
   Bucher K. and M. Frey, 2002. Petrogenesis of Metamorphic Rocks. Springer-Verlag; Berlin, Heidelberg; pp. 341.
   Chalmers G., R.M. Bustin and I. Powers, 2009. A pore by any other name would be as small: The importance of meso- and microporosity in shale gas capacity (abs.): AAPG Search and Discovery article 90090, 1 p.: http://www.searchanddiscovery.com/abstracts/html/2009/annual/abstracts/chalmers.htm(accessed March 14, 2011).
   Day-Stirrat, R.J., A. McDonnell, and L.J. Wood, 2010, Diagenetic and seismic concerns associated with interpretation of deeply buried “mobile schales”, in L. Wood, ed., Schale tectonics: AAPG Memoir 93, p. 5-27.
   Glasmacher U.A, Bauer W., Clauer N., Puchkov V.N., 2004. Neoproterozoic metamorpishm and deformation at the southeastern margin of the East European Craton Uralides, Russia. International Journal of Earth Sciences (Geol Rundsch) (2004) November 2004, Volume 93, Issue 5, pp. 921–944. DOI: https://doi.org/10.1007/s00531-004-0426-3
   Jacob G., H.J. Kisch, and B.A. van der Pluijm, 2000. The relationship of phyllosilicate orientation, X-ray diffraction intensity ratios, and c/b fissility ratios of the Helvetic zone of the Swiss Alps and the Caledonides of Jamtland, central western Sweden: Journal of Structural Geology, 22 (2), p. 245-258.
   Katsube T.J., 2000. Shale permeability and pore-structure evolution characteristics, Geological Survey of Canada. Report 2000, E15, 9 p.
   Katsube T.J., M.A. Williamson, 1998. Shale petrophysical characteristics: permeability history of subsiding shales; in Shales and Mudstones II: Petrography, Petrophysics, Geochemistry and Economic Geology, (ed.) J. Schieber, W. Zimmerle, and P.S. Sethi; E. Schweizerbart Science Publishers, Stuttgart, Germany, p. 69-91.
   Kisch H.J., 1990. Calibration of the anchizone: a critical comparison of illite ‘crystallinity’ scales used for definition, Journal of Metamorphic Geology, 8: 31–46. DOI: https://doi.org/10.1111/j.1525-1314.1990.tb00455.x
   Kisch, H.J., 1991. Development of slaty cleavage and degree of very low grade metamorphism: a review. Journal of Metamorphic Geology, 9, pp. 735–750. DOI: https://doi.org/10.1111/j.1525-1314.1991.tb00562.x
   Kubler B., 1967. La cristallinite de l'illite et les zones tout a fait superieures du metamorphisme, in: Colloque sur les etages tectoniques, 1966, Neuchatel, Ed. La Braconniere, 105-122.
   Loucks R.G., M.R. Reed, S.C. Ruppel and U. Hammes, 2012. Spoctrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores, AAPG Bulletin, v. 96, no. 6 (June 2012), pp. 1071–1098. DOI: https://doi.org/10.1306/08171111061
   Mastalerz, M., A. Schimmelmann, A. Drobniak, and Y. Chen, 2013, Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion, AAPG Bulletin, v. 97, no. 10 (October 2013), pp. 1621–1643. DOI: https://doi.org/10.1306/04011312194
   Merriman, R.J., Peacor, D.R., 1999. Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. In: Frey, M., Robinson, D. (Eds.), Low-grade metamorphism. Blackwell Science, Oxford, pp. 10–60.
   Microstructure of fine-grained sediments: from mud to shale, 1991. Editors: Bennett, R.H., Bryant, W.R., Hulbert, M.H., Associated Editors: Chiou, W.A., Faas, R.W., Kasprowicz, J., Li, H., Lomenick, T., O`Brien, N.R., Pamukcu, S., Smart, P., Weaver, C.E., Yamamoto, T. Springer New York. 1991, 566 p. DOI: https://doi.org/10.1007/978-1-4612-4428-8
   Mondol, N.H., K. Bjorlykke, J. Jahren, and K. Hoeg, 2007, Experimental mechanical compaction of clay mineral aggregates - changes in physical properties of mudstones during burial: Marine and Petroleum Geology, v. 24, p. 289–311. DOI: https://doi.org/10.1016/j.marpetgeo.2007.03.006
   Nelson, H.P., 2009. Pore throat sizes in sandstones, tight sandstones and shale: AAPG, V. 93, no 3, 329-340 p. DOI: https://doi.org/10.1306/10240808059
   Neuzel, C.E., 1994, How permeable are clays and shales? Water Resources Research, vol. 30, no. 2 (February 1994), p. 145-150.
   Park A.F., 2009. Cleavages developed in mudstone during diagenesis and deformation: an example from the Carboniferous (Tournaisian), southeastern New Brunswick, Canada: Atlantic Geology 45 (2009), pp. 204–216. DOI: https://doi.org/10.4138/atlgeol.2009.010
   Passchier, C.W., Trouw, R.A.J., 2005. Microtectonics. Springer-Verlag Berlin Heidelberg, 366 p. DOI: https://doi.org/10.1007/3-540-29359-0
   Rouquerol, J., D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D. F. Sing and K.K. Unger, 1994. Recommendations for the characterization of porous solids: Pure and Applied Chemistry, v. 66, p. 1739–1758. DOI: https://doi.org/10.1351/pac199466081739
   Rushing, J.A., 2014. Petrophysics of Shale Reservoirs: Understanding the rocks, pores, fluids and their interactions. AMU PETE 631 Lecture College Station, TX (USA) - 07 April 2014. 102 p. http://www.pe.tamu.edu/blasingame/data/z_zCourse_Archive/P631_14A/P631_14A_Lectures/P631_14A_Lec_xx_...
   Schieber, J., 2011. Shale microfabrics and pore development - An overview with emphasis on the importance of depositional processes, Recovery – 2011 CSPG CSEG CWLS Convention, 4 p.
   Schmoker J.W., 1995. Method for assessing continuous-type (unconventional) hydrocarbon accumulations, in Gautier D.L., Dolton G.L., Takahashi K.I, and Varens K.L., eds., 1995, 1995 National assessment of United States oil and gas resources – Results, methodology, and supporting data: U.S. Geological Survey Bulletin Data Series DDS-30, 1 CD-ROM.
   Syed A.A., Clark W.J., Moore W.R., Dribus J.R., 2010. Diagenesis and reservoir quality // Oilfield Review Summer 2010:22, no.2. – 14-27 p. https://www.slb.com/~/media/Files/resources/oilfield_review/ors10/sum10/composite.pdf
   TXCO Resources, 2009, The emerging resource company, TXCO Resources: Howard Weil 37th Annual Energy Conference, New Orleans, March 22–29, 2009, 35. http://www.scribd.com/doc/20128412/The-Emerging-Resource-Company (accessed March 25, 2011)
   Van der Pluijm, B.A. & Kaars-Sijpesteijn, C.H., 1983. Chlorite-mica aggregates: morphology, orientation, development and bearing on cleavage formation in very low-grade rocks. Journal of Structural Geology, V.6, pp. 399-407.
   Van Sickel, W.A., Kominz, M.A., Miller, K.G., & Browning, J.V. (2004). Late Cretaceous and Cenozoic sea-level estimates: Backstripping analysis of borehole data, onshore New Jersey. Basin Research, 16(4), 451-465. DOI: https://doi.org/10.1111/j.1365-2117.2004.00242.x
   Vazquez M., L. Asebriy, A. Azdimousa, A. Jabaloy, G. Booth-Rea, L. Barbero, M. Mellini, F. Gonzalez-Lodeiro, 2013. Evidence of extensional metamorphism associated to Cretaceous rifting of the North-Maghrebian massive margin: The Tanger-Ketama Unit (External Rif, northern Morocco): Geologica Acta, Vol. 11, N3, September 2013, pp. 277-293. DOI: https://doi.org/10.1344/105.000001843
   Weaver C.E., 1984. Shale-Slate Metamorphism in Southern Appalachians Developments in Petrology. V. 10, 239 p.
   Winkler, H.G.F., 1974. Petrogenesis of Metamorphic Rocks. English editor E. Froese. Springer Study Edition, 3rd edition, Springer-Verlag, Berlin, Heidelberg, New York. 320 p.