Hard-extracted reserves, unconventional hydrocarbon sources
Article # 39_2024 | submitted on 10/07/2024 displayed on website on 12/16/2024 |
27 p. | Morariu D., Averyanova O.Yu. |
Thermal cracking - key parameter for increasing rock permeability | |
The thermal cracking and rock permeability enlarging are important key parameters controlling the flow capacity. Strictly impermeable rocks (igneous rocks, gneiss, quartz sandstone, etc) during the burial type of deformation (yo-yo tectonics with multiple cycles of burial and exhumation in several tectonic settings like orogen, collisional orogen, wrench area, back-arc depression, back-arc rift and intercontinental rift) can reach temperatures exceeding 350-4000C. Within this thermal range the thermal cracking metamorphism can become very active and intensive. At this stage affecting rock can even reach permeability values characteristic of semi-pervious rocks. During exhumation, the fabric and PT adaptation process (retromorphism like) begins in the buried rock. As the retromorphism like process is rarely complete we can observe some rocks on the field that at first glance seem to belong to impervious class. The same rocks after being tested in laboratory during petroleum or other exploration activity may show specific permeability values that lead us to place them in the semi-pervious permeability class. Keywords: permeability, thermal cracking, yo-yo tectonic, retromorphism like process, semi-pervious rock. |
|
article citation | Morariu D., Averyanova O.Yu. Thermal cracking - key parameter for increasing rock permeability. Neftegazovaya Geologiya. Teoriya I Praktika, 2024, vol. 19, no. 4, available at: https://www.ngtp.ru/rub/2024/39_2024.html EDN: SXHRPQ |
References
Bauer S.J., Johnson B. Effects of slow uniform heating on the physical properties of the westerly and charcoal granites. In: 20th U.S. Symposium on Rock Mechanics (USRMS) (4-6 June 1979, Austin, Texas), available at: https://www.onepetro.org/conference-paper/ARMA-79-0007
Bear J. Dynamics of fluids in porous media. New-York: Dover, 1988, 764 p.
Brace W.F., Walsh J.B., Frangos W.T. Permeability of granite under high pressure. Journal of Geophysical Research, 1968, vol. 73, issue 6, pp. 2225-2236. DOI: 10.1029/JB073i006p02225
Brace W.F. Permeability of crystalline rocks: New in situ measurements. Journal of Geophysical Research: Solid Earth, 1984, vol. 89, issue B6, pp. 4327-4330. DOI: 10.1029/JB089iB06p04327
Caine J.S., Evans J.P., Forster C.B. Fault zone architecture and permeability structure. Geology, 1996, vol. 18, pp. 1025-1028. DOI: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
Chen X., Wang Y., Meng X., Chen K., Su J. Experimental measurement of oil shale permeability and its influence on in-situ upgrading. IOP Conference Series: Earth and Environmental Science (14-15 Nov 2020, Shenyang City, China). 3rd International Conference on Green Energy and Sustainable Development, 2021, no. 651, 032095. DOI: 10.1088/1755-1315/651/3/032095
Chen Y., Wu X., Zhang F. Experiments on thermal fracture in rocks. Chinese Science Bulletin, 1999, vol. 44, pp. 1610-1612. DOI: 10.1007/BF02886103
Dou L., Wen Z. Classification and exploration potential of sedimentary basins based on the superposition and evolution process of prototype basins. Petroleum Exploration and Development, 2021, vol. 48, pp. 1271-1288. DOI: 10.1016/S1876-3804(21)60286-0
Evans J.P., Forster C.B., Goddard J.V. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. Journal of Structural Geology, 1997, vol. 19, issue 11, pp. 1393-1404. DOI: 10.1016/S0191-8141(97)00057-6
Fan L.F., Gao J.W., Wu Z.J., Yang S.Q., Ma G.W. An investigation of thermal effects on micro-properties of granite by X-ray CT technique. Applied Thermal Engineering, 2018, vol. 140, pp. 505-519. DOI: 10.1016/j.applthermaleng.2018.05.074
Feng Z., Zhao Y., Zhang Y., Wan Z. Real-time permeability evolution of thermally cracked granite at triaxial stresses. Applied Thermal Engineering, 2018, vol. 133, pp. 194-200. DOI: 10.1016/j.applthermaleng.2018.01.037
Ge Z., Sun Q., Li W. Temperature and pressure effect on permeability of Chinese sandstone: A review. Acta Geodyn. Geomater., 2018, vol. 15, no. 3 (191), pp. 289-296. DOI: 10.13168/AGG.2018.0021
Ingebritsen S.E., Gleeson T. Crustal permeability: introduction to the special issue. Geofluids, 2015, vol. 15, pp. 1-10. DOI: 10.1111/gfl.12118
Jiang G., Zuo J.P., Li L., Ma T., Wei X. The Evolution of cracks in Maluanshan granite subjected to different temperature processing. Rock Mechanics and Rock Engineering, 2018, vol. 51, pp. 1683-1695. DOI: 10.1007/s00603-018-1403-7
Kang Z., Yang D., Zhao Y., Hu Y. Thermal cracking and corresponding permeability of Fushun oil shale. Oil Shale, 2011, vol. 28, issue 2, pp. 273-283. DOI: 10.3176/oil.2011.2.02
Le Ravalec M., Gueguen Y. Permeability models for heated saturated igneous rocks. Journal of Geophysical Research: Solid Earth, 1994, vol. 99, issue B12, pp. 24251-24261. DOI: 10.1029/94JB02124
Liu J., Li B., Tian W., Wu X. Investigating and predicting permeability variation in thermally cracked dry rocks. International Journal of Rock Mechanics and Mining Sciences, March 2018, vol. 103, pp. 77-88. DOI: 10.1016/j.ijrmms.2018.01.023
Liu J., Wang Z., Shi W., Tan X. Experiments on the thermally enhanced permeability of tight rocks: A potential thermal stimulation method for Enhanced Geothermal Systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, pp. 1-14. DOI: 10.1080/15567036.2020.1745332
Loucks R.G., Reed R.M., Ruppel S.C., Hammes U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrocks pores. AAPG Bulletin, 2012, vol. 96, no. 6, pp. 1071-1098. DOI: 10.1306/08171111061
Meng X., Liu W., Meng T. Experimental investigation of thermal cracking and permeability evolution of granite with varying initial damage under high temperature and triaxial compression. Advances in Materials Science and Engineering, 2018, pp. 1-9. DOI: 10.1155/2018/8759740
Morariu D. Issledovanie skopleniy uglevodorodov v porodakh fundamenta [Contribution to hydrocarbon occurrence in basement rocks]. Neftegazovaya Geologiya. Teoriya I Praktika, 2012, vol. 7, no. 3, available at: http://www.ngtp.ru/rub/9/51_2012.pdf
Nelson P.H. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bulletin, 2009, vol. 93, no. 3, pp. 329-340. DOI: 10.1306/10240808059
Ni H.Y., Liu J.F., Chen X., Wang Y.G., Pu H., Mao X.B. Macroscopic and microscopic study on gas permeability characteristics of tight sandstone under temperature-stress coupling. 5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future, Okinawa, Japan, December 2019. ISRM-YSRM-2019-152.
Qian Y., Jing H., Haijian S.U., Zhu T. Loading rate effect on fracture properties of granite after high temperature. J. China Univ. Min. Tech., 2015, vol. 44, 4, pp. 597-603.
Siratovich P.A., Villeneuve M.S., Cole J.W., Kennedy B.M., Bégué F. Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs. International Journal of Rock Mechanics and Mining Sciences, 2015, vol. 80, pp. 265-280. DOI: 10.1016/j.ijrmms.2015.09.023
Somerton W.H., Gupta V.S. Role of fluxing agents in thermal alteration of sandstones. Journal Petroleum Technology, 1964, vol. 17, issue 05, pp. 585-588. DOI: 10.2118/1039-PA
Tanikawa W., Sakaguchi M., Tadai O., Hirose T. Influence of fault slip rate on shear‐induced permeability. Journal of Geophysical Research: Solid Earth, 2010, vol. 115 (B7). DOI: 10.1029/2009JB007013
Uehara S.I., Shimamoto T. Gas permeability evolution of cataclasite and fault gouge in triaxial compression and implications for changes in fault-zone permeability structure through the earthquake cycle. Tectonophysics, 2004, vol. 378, issue 3-4, pp. 183-195. DOI: 10.1016/j.tecto.2003.09.007
Whitney D.L., Umhoefer P.J., Teyssier. C., Fayon A.K. Yo-yo tectonics of the Niǧde Massif during wrenching in Central Anatolia. Turkish Journal of Earth Sciences, 2008, vol. 17, no. 2, pp. 209-217.
Wibberley C., Yielding G., Di Toro G. Recent advances in the understanding of fault zone internal structure: a review. Geological Society, London, Special Publications, 2008, vol. 299, pp. 5-33. DOI: 10.1144/SP299.2
Zhang H., Wang D., Yu C., Wei J., Liu S., Fu J. Microcrack evolution and permeability enhancement due to thermal shocks in coal. PLoS ONE, 2020, 15(5): e0232182. DOI: 10.1371/journal.pone.0232182
Zengchao F., Yangsheng Z., Zhang Y., Wan Z. Critical temperature of permeability change in thermally cracked granite. Meitan Xuebao. Journal of the China Coal Society, 2014, 39, pp. 1987-1992. DOI: 10.13225/j.cnki.jccs.2013.1359
Zuo J.P., Xie H.P., Zhou H.W., Peng S.P. SEM in situ investigation on thermal cracking behaviour of Pingdingshan sandstone at elevated temperatures. Geophysical Journal International, May 2010, vol. 181, issue 2, pp. 593-603. DOI: 10.1111/j.1365-246X.2010.04532.x
Bear J. Dynamics of fluids in porous media. New-York: Dover, 1988, 764 p.
Brace W.F., Walsh J.B., Frangos W.T. Permeability of granite under high pressure. Journal of Geophysical Research, 1968, vol. 73, issue 6, pp. 2225-2236. DOI: 10.1029/JB073i006p02225
Brace W.F. Permeability of crystalline rocks: New in situ measurements. Journal of Geophysical Research: Solid Earth, 1984, vol. 89, issue B6, pp. 4327-4330. DOI: 10.1029/JB089iB06p04327
Caine J.S., Evans J.P., Forster C.B. Fault zone architecture and permeability structure. Geology, 1996, vol. 18, pp. 1025-1028. DOI: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
Chen X., Wang Y., Meng X., Chen K., Su J. Experimental measurement of oil shale permeability and its influence on in-situ upgrading. IOP Conference Series: Earth and Environmental Science (14-15 Nov 2020, Shenyang City, China). 3rd International Conference on Green Energy and Sustainable Development, 2021, no. 651, 032095. DOI: 10.1088/1755-1315/651/3/032095
Chen Y., Wu X., Zhang F. Experiments on thermal fracture in rocks. Chinese Science Bulletin, 1999, vol. 44, pp. 1610-1612. DOI: 10.1007/BF02886103
Dou L., Wen Z. Classification and exploration potential of sedimentary basins based on the superposition and evolution process of prototype basins. Petroleum Exploration and Development, 2021, vol. 48, pp. 1271-1288. DOI: 10.1016/S1876-3804(21)60286-0
Evans J.P., Forster C.B., Goddard J.V. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. Journal of Structural Geology, 1997, vol. 19, issue 11, pp. 1393-1404. DOI: 10.1016/S0191-8141(97)00057-6
Fan L.F., Gao J.W., Wu Z.J., Yang S.Q., Ma G.W. An investigation of thermal effects on micro-properties of granite by X-ray CT technique. Applied Thermal Engineering, 2018, vol. 140, pp. 505-519. DOI: 10.1016/j.applthermaleng.2018.05.074
Feng Z., Zhao Y., Zhang Y., Wan Z. Real-time permeability evolution of thermally cracked granite at triaxial stresses. Applied Thermal Engineering, 2018, vol. 133, pp. 194-200. DOI: 10.1016/j.applthermaleng.2018.01.037
Ge Z., Sun Q., Li W. Temperature and pressure effect on permeability of Chinese sandstone: A review. Acta Geodyn. Geomater., 2018, vol. 15, no. 3 (191), pp. 289-296. DOI: 10.13168/AGG.2018.0021
Ingebritsen S.E., Gleeson T. Crustal permeability: introduction to the special issue. Geofluids, 2015, vol. 15, pp. 1-10. DOI: 10.1111/gfl.12118
Jiang G., Zuo J.P., Li L., Ma T., Wei X. The Evolution of cracks in Maluanshan granite subjected to different temperature processing. Rock Mechanics and Rock Engineering, 2018, vol. 51, pp. 1683-1695. DOI: 10.1007/s00603-018-1403-7
Kang Z., Yang D., Zhao Y., Hu Y. Thermal cracking and corresponding permeability of Fushun oil shale. Oil Shale, 2011, vol. 28, issue 2, pp. 273-283. DOI: 10.3176/oil.2011.2.02
Le Ravalec M., Gueguen Y. Permeability models for heated saturated igneous rocks. Journal of Geophysical Research: Solid Earth, 1994, vol. 99, issue B12, pp. 24251-24261. DOI: 10.1029/94JB02124
Liu J., Li B., Tian W., Wu X. Investigating and predicting permeability variation in thermally cracked dry rocks. International Journal of Rock Mechanics and Mining Sciences, March 2018, vol. 103, pp. 77-88. DOI: 10.1016/j.ijrmms.2018.01.023
Liu J., Wang Z., Shi W., Tan X. Experiments on the thermally enhanced permeability of tight rocks: A potential thermal stimulation method for Enhanced Geothermal Systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, pp. 1-14. DOI: 10.1080/15567036.2020.1745332
Loucks R.G., Reed R.M., Ruppel S.C., Hammes U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrocks pores. AAPG Bulletin, 2012, vol. 96, no. 6, pp. 1071-1098. DOI: 10.1306/08171111061
Meng X., Liu W., Meng T. Experimental investigation of thermal cracking and permeability evolution of granite with varying initial damage under high temperature and triaxial compression. Advances in Materials Science and Engineering, 2018, pp. 1-9. DOI: 10.1155/2018/8759740
Morariu D. Issledovanie skopleniy uglevodorodov v porodakh fundamenta [Contribution to hydrocarbon occurrence in basement rocks]. Neftegazovaya Geologiya. Teoriya I Praktika, 2012, vol. 7, no. 3, available at: http://www.ngtp.ru/rub/9/51_2012.pdf
Nelson P.H. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bulletin, 2009, vol. 93, no. 3, pp. 329-340. DOI: 10.1306/10240808059
Ni H.Y., Liu J.F., Chen X., Wang Y.G., Pu H., Mao X.B. Macroscopic and microscopic study on gas permeability characteristics of tight sandstone under temperature-stress coupling. 5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future, Okinawa, Japan, December 2019. ISRM-YSRM-2019-152.
Qian Y., Jing H., Haijian S.U., Zhu T. Loading rate effect on fracture properties of granite after high temperature. J. China Univ. Min. Tech., 2015, vol. 44, 4, pp. 597-603.
Siratovich P.A., Villeneuve M.S., Cole J.W., Kennedy B.M., Bégué F. Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs. International Journal of Rock Mechanics and Mining Sciences, 2015, vol. 80, pp. 265-280. DOI: 10.1016/j.ijrmms.2015.09.023
Somerton W.H., Gupta V.S. Role of fluxing agents in thermal alteration of sandstones. Journal Petroleum Technology, 1964, vol. 17, issue 05, pp. 585-588. DOI: 10.2118/1039-PA
Tanikawa W., Sakaguchi M., Tadai O., Hirose T. Influence of fault slip rate on shear‐induced permeability. Journal of Geophysical Research: Solid Earth, 2010, vol. 115 (B7). DOI: 10.1029/2009JB007013
Uehara S.I., Shimamoto T. Gas permeability evolution of cataclasite and fault gouge in triaxial compression and implications for changes in fault-zone permeability structure through the earthquake cycle. Tectonophysics, 2004, vol. 378, issue 3-4, pp. 183-195. DOI: 10.1016/j.tecto.2003.09.007
Whitney D.L., Umhoefer P.J., Teyssier. C., Fayon A.K. Yo-yo tectonics of the Niǧde Massif during wrenching in Central Anatolia. Turkish Journal of Earth Sciences, 2008, vol. 17, no. 2, pp. 209-217.
Wibberley C., Yielding G., Di Toro G. Recent advances in the understanding of fault zone internal structure: a review. Geological Society, London, Special Publications, 2008, vol. 299, pp. 5-33. DOI: 10.1144/SP299.2
Zhang H., Wang D., Yu C., Wei J., Liu S., Fu J. Microcrack evolution and permeability enhancement due to thermal shocks in coal. PLoS ONE, 2020, 15(5): e0232182. DOI: 10.1371/journal.pone.0232182
Zengchao F., Yangsheng Z., Zhang Y., Wan Z. Critical temperature of permeability change in thermally cracked granite. Meitan Xuebao. Journal of the China Coal Society, 2014, 39, pp. 1987-1992. DOI: 10.13225/j.cnki.jccs.2013.1359
Zuo J.P., Xie H.P., Zhou H.W., Peng S.P. SEM in situ investigation on thermal cracking behaviour of Pingdingshan sandstone at elevated temperatures. Geophysical Journal International, May 2010, vol. 181, issue 2, pp. 593-603. DOI: 10.1111/j.1365-246X.2010.04532.x