Krylov A.A.
akrylow@gmail.com
Graduated from St. Petersburg State University (1996), Geological Faculty, Lithology and Marine Geology Department.
Associate Professor of the Sedimentary Geology Department, St. Petersburg State University; Senior Researcher of the Geological Mapping Department, VNIIOkeangeologia.
PhD in geology and mineralogy.
Area of scientific interests: lithology, geochemistry of stable isotopes, authigenic carbonate formation, geology of the Arctic, paleoclimatology.
Author of 63 publications.
Article # 40_2018 | submitted on 09/19/2018 displayed on website on 11/12/2018 |
25 p. | Morgunova I.P., Semenov P.B., Krylov A.A., Kursheva A.V., Litvinenko I.V., Malyshev S.A., Minami H., Hachikubo A., Zemskaya T.I., Khlystov O.M. |
Hydrocarbon molecular markers in bottom sediments of focused fluid discharge zones of Lake Baikal | |
The detailed research of the dispersed organic matter of Lake Baikal bottom sediments including analysis of hydrocarbon molecular markers – n-alkanes, isoprenoids, terpanes and polycyclic aromatic hydrocarbons has been carried out. The distribution of homologues of n-alkanes and their ratios in bottom sediments of the Posol bank-2, where mud breccias, gas-hydrates (bottom stations St1GT3, St1GT8) and authigenic carbonates (St1GT3) were detected, has shown an input of the highly transformed organic matter to the surface sediments likely due to the erosion and redeposition of sediments of the last glacial maximum extension age. Molecular composition of dispersed organic matter of the Ostrov site sediments (St3GC4) attested to the normal type of deposition not influenced by migration processes. Increased values of С12-С21 n-alkanes with an even maximum at С16 have been detected in sediments of station St18GC6 collected near the thermogenic methane seep (Kedr mud volcano), and together with the presence of the low transformed hopane structures (hop-17(21)-enes and hop-13(18)-enes) can testify to the methanotrophic and concomitant chemoorganotrophic microorganisms development in sediments. Keywords: dispersed organic matter, bottom sediments, hydrocarbon molecular markers, gas-hydrates, methane, focused fluid discharge, mud volcano, Lake Baikal. |
|
article citation | Morgunova I.P., Semenov P.B., Krylov A.A., Kursheva A.V., Litvinenko I.V., Malyshev S.A., Minami H., Hachikubo A., Zemskaya T.I., Khlystov O.M. Uglevodorodnye molekulyarnye markery v donnykh osadkakh zon fokusirovannoy razgruzki flyuidov ozera Baykal [Hydrocarbon molecular markers in bottom sediments of focused fluid discharge zones of Lake Baikal]. Neftegazovaya Geologiya. Teoriya I Praktika, 2018, vol. 13, no. 4, available at: http://www.ngtp.ru/rub/2018/40_2018.html |
DOI | https://doi.org/10.17353/2070-5379/40_2018 |
Bidoglio G., Stumm W. Chemistry of Aquatic Systems: Local and Global Perspectives. Springer Netherlands, 1994, 534 p. DOI: https://doi.org/10.1007/978-94-017-1024-4
Brincat D., Yamada K., Ishiwatari R., Uemura H., Naraoka H. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments // Organic Geochemistry, 2000, vol. 31, p. 287–294. DOI: https://doi.org/10.1016/S0146-6380(99)00164-3
Colman S.M., Karabanov E.B., Williams D.F., Hearn Jr.,P.P., King J.W., Orem W.H. Lake Baikal paleoclimate project, southeastern Siberia: initial dating and paleoenvironmental results // International Project on Paleolimnology and Late Cenozoic Climate Newsletter, 1992, vol. 6, p. 30–39.
Eglinton G., Hamilton R.J. Leaf epicuticular waxes // Science, 1967, vol. 56, p. 1322–1335.
Ekpo B.O., Oyo-Ita O.E., Wehner H. Even-n-alkane/alkene predominances in surface sediments from the Calabar River, SE Niger Delta, Nigeria // Naturwissenschaften, 2005, vol. 92, p. 341–346. DOI: https://doi.org/10.1007/s00114-005-0639-8
Elias V.O., Simoneit B.R.T., Cardoso J.N. Even n-alkane predominances on the Amazon shelf and a Northeast Pacific hydrothermal system // Naturwissenschaften, 1997, vol. 84, p. 415–420. DOI: https://doi.org/10.1007/s001140050421
Engel, M.H., Macko, S.A. Organic Geochemistry: Principles and Applications. Springer science + Business media, New York, 1993, 861 p.
Grimalt J., Albaiges J. Sources and occurrence of C-12-C-22 normal-flkane distributions with even carbon-number preference in sedimentary environments // Geochimica Et Cosmochimica Acta, 1987, vol. 51, p. 1379–1384. DOI: https://doi.org/10.1016/0016-7037(87)90322-X
Hachikubo A., Yamazaki R., Kita M., Krylov A. Gas Analysis. In: Operation Report of Multi-phase Gas Hydrate Project III 2016 (MHP III-16), R/V G.U. Vereschagin Cruise, VER-16-03, Environmental and Energy Resources Research Center, Kitami Institute of Technology, Kitami, H. Minami, H. Shoji, O. Khlystov, M. De Batist, N. Takahashi and A.P. Fedotov (Eds), 2017, p. 124-130.
Jiang Ch., Alexander R., Kagi R.I., Murray A.P. Origin of perylene in ancient sediments and its geological significance // Organic Geochemistry, 2000, vol. 31, p. 1545–1559. DOI: https://doi.org/10.1016/S0146-6380(00)00074-7
Khlystov O.M., Minami Kh., Khachikubo A., Yamashita S., De Batist M., Nauds L., Khabuev A.V., Chenskiy A.G., Gubin N.A., Vorob'eva S.S. Vozrast gryazevoy brekchii gryazevykh vulkanov Akademicheskogo khrebta ozera Baykal [Age of mud breccias from mud volcanoes in Academician Ridge, Lake Baikal]. Geodinamika i tektonofizika, 2017, vol. 8, no 4, p. 923–932.
Marynowski L., Smolarek J., Bechtel A., Philippe M., Kurkiewicz S., Simoneit B.R.T. Perylene as an indicator of conifer fossil wood degradation by wood-degrading fungi // Organic Geochemistry, 2013, vol. 59, p. 143–151. DOI: https://doi.org/10.1016/j.orggeochem.2013.04.006
Meyers P.A., Ishiwatari R. Lacustrine organic geochemistry: an overview of indicators of organic matter sources and diagenesis in lake sediments // Organic Geochemistry, 1993, vol. 20, p. 867–900. DOI: https://doi.org/10.1016/0146-6380(93)90100-P
Minami H., Hachikubo A., Yamashita S., Sakagami H., Kasashima R., Konishi M., Shoji H., Takahashi N., Pogodaeva T., Krylov A., Khabuev A., Kazakov A., Batist M., Naudts L., Chensky A., Gubin N., Khlystov O. Hydrogen and oxygen isotopic anomalies in pore waters suggesting clay mineral dehydration at gas hydrate-bearing Kedr mud volcano, southern Lake Baikal, Russia // Geo-marine Letters, 2018, 13 p. DOI: https://doi.org/10.1007/s00367-018-0542-x
Minami H., Shoji H., Khlystov O., De Batist M., Takahashi N., Fedotov A.P. Operation Report of Multi-phase Gas Hydrate Project III 2016 (MHPIII-16), R/V G.U. Vereschagin Cruise, VER-16-03, Environmental and Energy Resources Research Center, Kitami Institute of Technology, Kitami, 2017, 143 p.
Pancost R.D., Damsté J.S.S., De Lint S., Van der Maarel M.J.E.C., Gottschal J.C. and Medinaut Shipboard Scientific Party. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria // Applied and Environmental Microbiology, 2000, Mar. 2000, p. 1126–1132. DOI: https://doi.org/10.1128/AEM.66.3.1126-1132.2000
Peters, K.E., Walters, C.C., Moldowan, J.M. The Biomarker Guide. Cambridge University Press, Cambridge, 2005, 1155 p.
Petrova V.I., Batova G.I., Kursheva A.V., Litvinenko I.V., Morgunova I.P., Rusinovich A.V. Molekulyarnaya geokhimiya organicheskogo veshchestva i neftegazogeneratsionnyy potentsial verkhnepaleozoyskikh porod Predtaymyrskoy zony podnyatiy [Molecular geochemistry of organic matter and petroleum generation potential of the Upper Paleozoic rocks belonging to the Pre-Taimyr uplift zone]. Neftegazovaya Geologiya. Teoriya I Praktika, 2018, vol. 13, no. 3, available at: http://www.ngtp.ru/rub/1/23_2018.pdf. DOI: https://doi.org/10.17353/2070-5379/23_2018
Prahl F.G., Hayes J.M., Xie T.M. Diploptene: an indicator of terrigenous organic carbon in Washington coastal sediments // Limnology and Oceanography, 1992, vol. 37, p. 1290–1300. DOI: https://doi.org/10.4319/lo.1992.37.6.1290
Sakagami H., Takahashi N., Hachikubo A. Molecular and isotopic composition of hydrate-bound and dissolved gases in the southern basin of Lake Baikal, based on an improved headspace gas method // Geo-Marine Letters, 2012, vol. 32, p. 465–472. DOI: https://doi.org/10.1007/s00367-012-0294-y
Samuel O.J., Kildahl-Andersen G., Nytoft H.P., Johansen J.E., Jones M. Novel tricyclic and tetracyclic terpanes in Tertiary deltaic oils: structural identification, origin and application to petroleum correlation // Organic Geochemistry, 2010, vol. 41, p. 1326–1337. DOI: https://doi.org/10.1016/j.orggeochem.2010.10.002
Seifert W.K., Moldovan J.M. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils // Geochimica et Cosmochimica Acta, 1978, vol. 42, p. 77–95. DOI: https://doi.org/10.1016/0016-7037(78)90219-3
Sessions A.L., Zhanga L., Welander P.V., Doughty D., Summons R.E., Newmana D.K. Identification and quantification of polyfunctionalized hopanoids by high temperature gas chromatography–mass spectrometry // Organic Geochemistry, 2013, vol. 56, p. 120–130. DOI: https://doi.org/10.1016/j.orggeochem.2012.12.009
Simoneit B.R.T., Chester R., Eglinton G. Biogenic lipids from particulates from the lower atmosphere over the eastern Atlantic // Nature, 1977, vol. 267, p. 682–685. DOI: https://doi.org/10.1038/267682a0
Thiel V., Peckmann J., Seifert R., Wehrung P., Reitner J., Michaelis W. Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting // Geochimica et Cosmochimica Acta, 1999, vol. 63, no 23/24, p. 3959-3966. DOI: https://doi.org/10.1016/S0016-7037(99)00177-5
Venkatesan M.I. Occurrence and Possible Sources of Perylene in Marine Sediments-a Review // Marine Chemistry, 1988, vol. 25, p. 1–27. DOI: https://doi.org/10.1016/0304-4203(88)90011-4
Vologina E.G., Shturm M., Vorob"eva S.S., Granina L.Z., Toshchakov S.Yu. Osobennosti osadkonakopleniya v ozere Baykal v golotsene [Character of sedimentation in Lake Baikal in the Holocene]. Geologia i geofizika, 2003, vol. 44, no 5, p. 407–421.
Wakeham S.G., Canuel E.A. Biogenic polycyclic aromatic hydrocarbons in sediments of the San Joaquin River in California (USA), and current paradigms on their formation // Environment Science & Pollution Research. DOI: https://doi.org/10.1007/s11356-015-5402-x
Article # 8_2017 | submitted on 12/19/2016 displayed on website on 03/13/2017 |
21 p. | Krylov A.A., Khlystov O.M., Hachikubo A., Minami H., Pogodaeva T.V., Zemskaya T.I., Krzhizhanovskaya M.G., Muzafarova L.E., Atanyazov R.Zh. |
Mechanism of authigenic rhodochrosite formation in the near-bottom sediments of the Saint-Petersburg-2 gas-hydrate-bearing structure (central basin of the Baikal Lake) | |
Gas-hydrate-bearing fluid discharge areas are generally marked with authigenic carbonates. The latter can be formed in result of methane oxidation/generation, destruction of organic matter or the mixing of these processes. In most cases, the history of carbonates generation can be steadily reconstructed based on the isotopic data. This article discussed the mechanism of rhodochrosite crystallization, rhodochrosite which was discovered for the first time in the near-bottom sediments of the Baikal Lake gas-hydrate-bearing structures (the St. Petersburg-2 structure). The rhodochrosite formation is related to the cause of its formation were the microbial degradation of organic matter in the zone of methane generation.
Keywords: authigenic carbonates, rhodochrosite, the methane, gas-hydrate-bearing structure, Lake Baikal. |
|
article citation | Krylov A.A., Khlystov O.M., Hachikubo A., Minami H., Pogodaeva T.V., Zemskaya T.I., Krzhizhanovskaya M.G., Muzafarova L.E., Atanyazov R.Zh. Mekhanizm formirovaniya autigennogo rodokhrozita v pripoverkhnostnykh osadkakh gazogidratonosnoy struktury Sankt-Peterburg-2 v tsentral'noy kotlovine ozera Baykal [Mechanism of authigenic rhodochrosite formation in the near-bottom sediments of the Saint-Petersburg-2 gas-hydrate-bearing structure (central basin of the Baikal Lake)]. Neftegazovaya Geologiya. Teoriya I Praktika, 2017, vol. 12, no. 1, available at: http://www.ngtp.ru/rub/12/8_2017.pdf |
DOI | https://doi.org/10.17353/2070-5379/8_2017 |
Borowski W.S., Paull C.K., Ussler III W. Carbon cycling within the upper methanogenic zone of continental rise sediments: An example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits. Marine Chemistry, 1997, vol. 57, p. 299-311. DOI: https://doi.org/10.1016/S0304-4203(97)00019-4 |