Moskalenko I.V.
i.v.m.rostov.yar@gmail.com, ivmoskalenko@itmo.ru
Graduated from Yaroslavl State Technical University (2014), specialization "chemistry".PhD in Chemistry.
Head of the Operational Research Department of ITMO University, St. Petersburg.
Area of scientific interests: non-isothermal kinetics, pyrolysis.
Author about 30 publications.
Geochemical research
Article # 14_2024 | submitted on 04/05/2024 displayed on website on 05/20/2024 |
17 p. | Moskalenko I.V. |
Some questions of the kinetics of thermal decomposition of kerogen | |
This article discusses the main instruments and methods for studying the kinetics of decomposition of organic matter in oil source rocks (kerogen). The advantages and disadvantages of thermal analysis devices (TGA, DSC, Rock-Eval) and methods for obtaining kinetic information are considered. It is shown that an incorrect determination of the temperature and reaction mechanism leads to a colossal error in the determination of the activation energy and the preexponential factor. Keywords: kinetics of kerogen decomposition, thermal analysis device, determination of activation energy, determination of pre-exponential factor. |
|
article citation | Moskalenko I.V. Nekotorye voprosy kinetiki termicheskogo razlozheniya kerogena [Some questions of the kinetics of thermal decomposition of kerogen]. Neftegazovaya Geologiya. Teoriya I Praktika, 2024, vol. 19, no. 2, available at: https://www.ngtp.ru/rub/2024/14_2024.html EDN: TDLUAI |
References
Aboulkas A., El Harfi K. Study of the Kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen. Oil Shale, 2008, vol. 25, no. 4, pp. 426-443.
Abu El-Rub Z., Kujawa J., Al-Gharabli S. Pyrolysis kinetic parameters of Omari oil shale using thermogravimetric analysis. Energies, 2020, vol. 13, no. 16, pp. 4060.
Analizator gornykh porod Rock-Eval 6. Metodika poverki MP 22-251-2018 [Rock analyzer Rock-Eval 6. Verification procedure MP 22-251-2018]. Ekaterinburg: FSUE "UNIIM", 2018, 12 p. (In Russ.).
Astakhov S.M. Kineticheskie spektry reaktsiy preobrazovaniya organicheskogo veshchestva neftegazomaterinskikh otlozheniy [Chemical kinetics of organic matter transformation of petroleum source rocks]. Neftegazovaya Geologiya. Teoriya I Praktika, 2016, vol. 11, no. 1, available at: http://www.ngtp.ru/rub/1/5_2016.pdf. (In Russ.). DOI: 10.17353/2070-5379/5_2016
Barrie P.J. The mathematical origins of the kinetic compensation effect: 1. The effect of random experimental errors. Physical Chemistry Chemical Physics, 2012, vol. 14, no. 1, pp. 318-326.
Bouamoud R., Moine E.C., Mulongo-Masamba R., El Hamidi A. Halim, M., Arsalane S. Type I kerogen-rich oil shale from the Democratic Republic of the Congo: mineralogical description and pyrolysis kinetics. Petroleum Science, 2020, vol. 17, no. 1, pp. 255-267.
Burnham A.K. Global chemical kinetics of fossil fuels. Springer Cham: Springer International Publishing, 2017, 315 p. DOI: 10.1007/978-3-319-49634-4
Chang Z., Chu M., Zhang C., Bai S., Lin H., Ma L. Influence of inherent mineral matrix on the product yield and characterization from Huadian oil shale pyrolysis. Journal of Analytical and Applied Pyrolysis, 2018, vol. 130, pp. 269-276.
Galukhin A., Gerasimov A., Nikolaev I., Nosov R., Osin Y. Pyrolysis of kerogen of Bazhenov shale: kinetics and influence of inherent pyrite. Energy & Fuels, 2017, vol. 31, no. 7, pp. 6777-6781.
Jarvie D.M. Factors affecting Rock-Eval derived kinetic parameters. Chemical Geology, 1991, vol. 93, no. 1-2, pp. 79-99.
Khasanova N.M., Gabdrakhmanov D.T., Kayukova G.P., Morozov V.P., Mikhaylova A.N. EPR study of hydrocarbon generation potential of organic-rich Domanik rocks. Magnetic Resonance in Solids, 2017, vol. 19, no. 1, 11 pp.
Kuang W., Lu M., Yeboah I., Qian G., Duan X., Yang J., Chen D., Zhou X. A comprehensive kinetics study on non-isothermal pyrolysis of kerogen from Green River oil shale. Chemical Engineering Journal, 2019, vol. 377, pp. 120275.
Leushina E., Leushina E., Mikhaylova P., Kozlova E., Polyakov V., Morozov N., Spasennykh M. The effect of organic matter maturity on kinetics and product distribution during kerogen thermal decomposition: the Bazhenov Formation case study. Journal of Petroleum Science and Engineering, 2021, vol. 204, pp. 108751.
Mianowski A., Radko T., Siudyga T. Kinetic compensation effect of isoconversional methods. Reaction Kinetics, Mechanisms and Catalysis, 2021, vol. 132, no. 1, pp. 37-58.
Vandenbroucke M., Largeau C. Kerogen origin, evolution and structure. Organic Geochemistry, 2007, vol. 38, issue 5, pp. 719-833.
Vyazovkin S., Burnham A. K., Criado J. M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta, 2011, vol. 520, no. 1-2, pp. 1-19.
Vyazovkin S., Burnham A.K., Favergeon L., Koga N., Moukhina E., Pérez-Maqueda L.A., Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta, 2020, vol. 689, pp. 178597.
Vyazovkin S., Chrissafis K., Di Lorenzo Maria Laura, Koga N., Pijolat M., Roduit B., Sbirrazzuoli N., Sunol J.J. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta, 2014, vol. 590, pp. 1-23.
Wang W., Ma Y., Li S., Shi J., Teng J. Effect of temperature on the EPR properties of oil shale pyrolysates. Energy & Fuels, 2016, vol. 30, no. 2, pp. 830-834.
Abu El-Rub Z., Kujawa J., Al-Gharabli S. Pyrolysis kinetic parameters of Omari oil shale using thermogravimetric analysis. Energies, 2020, vol. 13, no. 16, pp. 4060.
Analizator gornykh porod Rock-Eval 6. Metodika poverki MP 22-251-2018 [Rock analyzer Rock-Eval 6. Verification procedure MP 22-251-2018]. Ekaterinburg: FSUE "UNIIM", 2018, 12 p. (In Russ.).
Astakhov S.M. Kineticheskie spektry reaktsiy preobrazovaniya organicheskogo veshchestva neftegazomaterinskikh otlozheniy [Chemical kinetics of organic matter transformation of petroleum source rocks]. Neftegazovaya Geologiya. Teoriya I Praktika, 2016, vol. 11, no. 1, available at: http://www.ngtp.ru/rub/1/5_2016.pdf. (In Russ.). DOI: 10.17353/2070-5379/5_2016
Barrie P.J. The mathematical origins of the kinetic compensation effect: 1. The effect of random experimental errors. Physical Chemistry Chemical Physics, 2012, vol. 14, no. 1, pp. 318-326.
Bouamoud R., Moine E.C., Mulongo-Masamba R., El Hamidi A. Halim, M., Arsalane S. Type I kerogen-rich oil shale from the Democratic Republic of the Congo: mineralogical description and pyrolysis kinetics. Petroleum Science, 2020, vol. 17, no. 1, pp. 255-267.
Burnham A.K. Global chemical kinetics of fossil fuels. Springer Cham: Springer International Publishing, 2017, 315 p. DOI: 10.1007/978-3-319-49634-4
Chang Z., Chu M., Zhang C., Bai S., Lin H., Ma L. Influence of inherent mineral matrix on the product yield and characterization from Huadian oil shale pyrolysis. Journal of Analytical and Applied Pyrolysis, 2018, vol. 130, pp. 269-276.
Galukhin A., Gerasimov A., Nikolaev I., Nosov R., Osin Y. Pyrolysis of kerogen of Bazhenov shale: kinetics and influence of inherent pyrite. Energy & Fuels, 2017, vol. 31, no. 7, pp. 6777-6781.
Jarvie D.M. Factors affecting Rock-Eval derived kinetic parameters. Chemical Geology, 1991, vol. 93, no. 1-2, pp. 79-99.
Khasanova N.M., Gabdrakhmanov D.T., Kayukova G.P., Morozov V.P., Mikhaylova A.N. EPR study of hydrocarbon generation potential of organic-rich Domanik rocks. Magnetic Resonance in Solids, 2017, vol. 19, no. 1, 11 pp.
Kuang W., Lu M., Yeboah I., Qian G., Duan X., Yang J., Chen D., Zhou X. A comprehensive kinetics study on non-isothermal pyrolysis of kerogen from Green River oil shale. Chemical Engineering Journal, 2019, vol. 377, pp. 120275.
Leushina E., Leushina E., Mikhaylova P., Kozlova E., Polyakov V., Morozov N., Spasennykh M. The effect of organic matter maturity on kinetics and product distribution during kerogen thermal decomposition: the Bazhenov Formation case study. Journal of Petroleum Science and Engineering, 2021, vol. 204, pp. 108751.
Mianowski A., Radko T., Siudyga T. Kinetic compensation effect of isoconversional methods. Reaction Kinetics, Mechanisms and Catalysis, 2021, vol. 132, no. 1, pp. 37-58.
Vandenbroucke M., Largeau C. Kerogen origin, evolution and structure. Organic Geochemistry, 2007, vol. 38, issue 5, pp. 719-833.
Vyazovkin S., Burnham A. K., Criado J. M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta, 2011, vol. 520, no. 1-2, pp. 1-19.
Vyazovkin S., Burnham A.K., Favergeon L., Koga N., Moukhina E., Pérez-Maqueda L.A., Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta, 2020, vol. 689, pp. 178597.
Vyazovkin S., Chrissafis K., Di Lorenzo Maria Laura, Koga N., Pijolat M., Roduit B., Sbirrazzuoli N., Sunol J.J. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta, 2014, vol. 590, pp. 1-23.
Wang W., Ma Y., Li S., Shi J., Teng J. Effect of temperature on the EPR properties of oil shale pyrolysates. Energy & Fuels, 2016, vol. 30, no. 2, pp. 830-834.