Averyanova O.Yu.
info@ngtp.ru
Graduated from Marine Geology and Lithology Department (led by Professor N.V. Logvinenko) of Geological Faculty of Leningrad State University (1983), graduate school of VNIGRI (1994).
Worked with VNIGRI as a senior lithology researcher in the department of Western Siberia and in the group of the region oil and gas forecast. The results of the study of secondary alteration in the terrigenous rocks and guidelines for petrographic studies of reservoir rocks at great depths are reflected in the 15 published papers.
Researcher of the Marketing and External Relations Department (1996 to 2006). Engaged in organizing of international symposia and scientific conferences. Has prepared more than 50 scientific papers of VNIGRI for publishing.
PhD in Geology and Mineralogy.
Head of information and publishing group of VNIGRI since 2007, which performs edition of the scientific electronic journal "Petroleum Geology - Theoretical and Applied Studies" and maintains a database of VNIGRI’s publications.
Area of scientific interest: oil and gas potential of the Timan-Pechora province, exploration and estimation of mineral resources, information technology.
Article # 39_2024 | submitted on 10/07/2024 displayed on website on 12/16/2024 |
27 p. | Morariu D., Averyanova O.Yu. |
Thermal cracking - key parameter for increasing rock permeability | |
The thermal cracking and rock permeability enlarging are important key parameters controlling the flow capacity. Strictly impermeable rocks (igneous rocks, gneiss, quartz sandstone, etc) during the burial type of deformation (yo-yo tectonics with multiple cycles of burial and exhumation in several tectonic settings like orogen, collisional orogen, wrench area, back-arc depression, back-arc rift and intercontinental rift) can reach temperatures exceeding 350-4000C. Within this thermal range the thermal cracking metamorphism can become very active and intensive. At this stage affecting rock can even reach permeability values characteristic of semi-pervious rocks. During exhumation, the fabric and PT adaptation process (retromorphism like) begins in the buried rock. As the retromorphism like process is rarely complete we can observe some rocks on the field that at first glance seem to belong to impervious class. The same rocks after being tested in laboratory during petroleum or other exploration activity may show specific permeability values that lead us to place them in the semi-pervious permeability class. Keywords: permeability, thermal cracking, yo-yo tectonic, retromorphism like process, semi-pervious rock. |
|
article citation | Morariu D., Averyanova O.Yu. Thermal cracking - key parameter for increasing rock permeability. Neftegazovaya Geologiya. Teoriya I Praktika, 2024, vol. 19, no. 4, available at: https://www.ngtp.ru/rub/2024/39_2024.html EDN: SXHRPQ |
Bear J. Dynamics of fluids in porous media. New-York: Dover, 1988, 764 p.
Brace W.F., Walsh J.B., Frangos W.T. Permeability of granite under high pressure. Journal of Geophysical Research, 1968, vol. 73, issue 6, pp. 2225-2236. DOI: 10.1029/JB073i006p02225
Brace W.F. Permeability of crystalline rocks: New in situ measurements. Journal of Geophysical Research: Solid Earth, 1984, vol. 89, issue B6, pp. 4327-4330. DOI: 10.1029/JB089iB06p04327
Caine J.S., Evans J.P., Forster C.B. Fault zone architecture and permeability structure. Geology, 1996, vol. 18, pp. 1025-1028. DOI: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
Chen X., Wang Y., Meng X., Chen K., Su J. Experimental measurement of oil shale permeability and its influence on in-situ upgrading. IOP Conference Series: Earth and Environmental Science (14-15 Nov 2020, Shenyang City, China). 3rd International Conference on Green Energy and Sustainable Development, 2021, no. 651, 032095. DOI: 10.1088/1755-1315/651/3/032095
Chen Y., Wu X., Zhang F. Experiments on thermal fracture in rocks. Chinese Science Bulletin, 1999, vol. 44, pp. 1610-1612. DOI: 10.1007/BF02886103
Dou L., Wen Z. Classification and exploration potential of sedimentary basins based on the superposition and evolution process of prototype basins. Petroleum Exploration and Development, 2021, vol. 48, pp. 1271-1288. DOI: 10.1016/S1876-3804(21)60286-0
Evans J.P., Forster C.B., Goddard J.V. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. Journal of Structural Geology, 1997, vol. 19, issue 11, pp. 1393-1404. DOI: 10.1016/S0191-8141(97)00057-6
Fan L.F., Gao J.W., Wu Z.J., Yang S.Q., Ma G.W. An investigation of thermal effects on micro-properties of granite by X-ray CT technique. Applied Thermal Engineering, 2018, vol. 140, pp. 505-519. DOI: 10.1016/j.applthermaleng.2018.05.074
Feng Z., Zhao Y., Zhang Y., Wan Z. Real-time permeability evolution of thermally cracked granite at triaxial stresses. Applied Thermal Engineering, 2018, vol. 133, pp. 194-200. DOI: 10.1016/j.applthermaleng.2018.01.037
Ge Z., Sun Q., Li W. Temperature and pressure effect on permeability of Chinese sandstone: A review. Acta Geodyn. Geomater., 2018, vol. 15, no. 3 (191), pp. 289-296. DOI: 10.13168/AGG.2018.0021
Ingebritsen S.E., Gleeson T. Crustal permeability: introduction to the special issue. Geofluids, 2015, vol. 15, pp. 1-10. DOI: 10.1111/gfl.12118
Jiang G., Zuo J.P., Li L., Ma T., Wei X. The Evolution of cracks in Maluanshan granite subjected to different temperature processing. Rock Mechanics and Rock Engineering, 2018, vol. 51, pp. 1683-1695. DOI: 10.1007/s00603-018-1403-7
Kang Z., Yang D., Zhao Y., Hu Y. Thermal cracking and corresponding permeability of Fushun oil shale. Oil Shale, 2011, vol. 28, issue 2, pp. 273-283. DOI: 10.3176/oil.2011.2.02
Le Ravalec M., Gueguen Y. Permeability models for heated saturated igneous rocks. Journal of Geophysical Research: Solid Earth, 1994, vol. 99, issue B12, pp. 24251-24261. DOI: 10.1029/94JB02124
Liu J., Li B., Tian W., Wu X. Investigating and predicting permeability variation in thermally cracked dry rocks. International Journal of Rock Mechanics and Mining Sciences, March 2018, vol. 103, pp. 77-88. DOI: 10.1016/j.ijrmms.2018.01.023
Liu J., Wang Z., Shi W., Tan X. Experiments on the thermally enhanced permeability of tight rocks: A potential thermal stimulation method for Enhanced Geothermal Systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, pp. 1-14. DOI: 10.1080/15567036.2020.1745332
Loucks R.G., Reed R.M., Ruppel S.C., Hammes U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrocks pores. AAPG Bulletin, 2012, vol. 96, no. 6, pp. 1071-1098. DOI: 10.1306/08171111061
Meng X., Liu W., Meng T. Experimental investigation of thermal cracking and permeability evolution of granite with varying initial damage under high temperature and triaxial compression. Advances in Materials Science and Engineering, 2018, pp. 1-9. DOI: 10.1155/2018/8759740
Morariu D. Issledovanie skopleniy uglevodorodov v porodakh fundamenta [Contribution to hydrocarbon occurrence in basement rocks]. Neftegazovaya Geologiya. Teoriya I Praktika, 2012, vol. 7, no. 3, available at: http://www.ngtp.ru/rub/9/51_2012.pdf
Nelson P.H. Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bulletin, 2009, vol. 93, no. 3, pp. 329-340. DOI: 10.1306/10240808059
Ni H.Y., Liu J.F., Chen X., Wang Y.G., Pu H., Mao X.B. Macroscopic and microscopic study on gas permeability characteristics of tight sandstone under temperature-stress coupling. 5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future, Okinawa, Japan, December 2019. ISRM-YSRM-2019-152.
Qian Y., Jing H., Haijian S.U., Zhu T. Loading rate effect on fracture properties of granite after high temperature. J. China Univ. Min. Tech., 2015, vol. 44, 4, pp. 597-603.
Siratovich P.A., Villeneuve M.S., Cole J.W., Kennedy B.M., Bégué F. Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs. International Journal of Rock Mechanics and Mining Sciences, 2015, vol. 80, pp. 265-280. DOI: 10.1016/j.ijrmms.2015.09.023
Somerton W.H., Gupta V.S. Role of fluxing agents in thermal alteration of sandstones. Journal Petroleum Technology, 1964, vol. 17, issue 05, pp. 585-588. DOI: 10.2118/1039-PA
Tanikawa W., Sakaguchi M., Tadai O., Hirose T. Influence of fault slip rate on shear‐induced permeability. Journal of Geophysical Research: Solid Earth, 2010, vol. 115 (B7). DOI: 10.1029/2009JB007013
Uehara S.I., Shimamoto T. Gas permeability evolution of cataclasite and fault gouge in triaxial compression and implications for changes in fault-zone permeability structure through the earthquake cycle. Tectonophysics, 2004, vol. 378, issue 3-4, pp. 183-195. DOI: 10.1016/j.tecto.2003.09.007
Whitney D.L., Umhoefer P.J., Teyssier. C., Fayon A.K. Yo-yo tectonics of the Niǧde Massif during wrenching in Central Anatolia. Turkish Journal of Earth Sciences, 2008, vol. 17, no. 2, pp. 209-217.
Wibberley C., Yielding G., Di Toro G. Recent advances in the understanding of fault zone internal structure: a review. Geological Society, London, Special Publications, 2008, vol. 299, pp. 5-33. DOI: 10.1144/SP299.2
Zhang H., Wang D., Yu C., Wei J., Liu S., Fu J. Microcrack evolution and permeability enhancement due to thermal shocks in coal. PLoS ONE, 2020, 15(5): e0232182. DOI: 10.1371/journal.pone.0232182
Zengchao F., Yangsheng Z., Zhang Y., Wan Z. Critical temperature of permeability change in thermally cracked granite. Meitan Xuebao. Journal of the China Coal Society, 2014, 39, pp. 1987-1992. DOI: 10.13225/j.cnki.jccs.2013.1359
Zuo J.P., Xie H.P., Zhou H.W., Peng S.P. SEM in situ investigation on thermal cracking behaviour of Pingdingshan sandstone at elevated temperatures. Geophysical Journal International, May 2010, vol. 181, issue 2, pp. 593-603. DOI: 10.1111/j.1365-246X.2010.04532.x
Article # 10_2018 | submitted on 03/12/2018 displayed on website on 03/30/2018 |
25 p. | Morariu D., Averyanova O.Yu. |
Сleavage fabric – significant faсtor creating discrete hydrocarbon migration pathways in diagenetic to low metamorphic pelites | |
*The article is presented in English. From the point of view of petroleum geology, the transformation experienced by pelitic rocks with petroleum potential in the regional burial process in the domain of diagenesis to low metamorphism past a certain point can by a significant risk factor - an important reduction of porosity-permeability, petroleum pathways disturbing, and over maturation of organic matter. The cleavage structures developed during the conversion into the new structural conditions can even produce open space volumes with crenulation distance spaces varying in the presented areas from 20 to 150 micrometers, spaces that could constitute discrete pathways for a variety of fluids. Certain terrains with a favourable petrogenetic profile (pelitic rocks with cleavage development and temperatures conditions not exceeding 100-150°C) may be considered as potential petroleum discrete pathways. For petroleum prospecting activity the previously described terrains could represent a possible interesting areas. Keywords: pelitic rocks, crenulation distance space, cleavage fabric, discrete pathways for petroleum fluids, potential petroleum bearing area. |
|
article citation | Morariu D., Averyanova O.Yu. Сleavage fabric – significant faсtor creating discrete hydrocarbon migration pathways in diagenetic to low metamorphic pelites. Neftegazovaya Geologiya. Teoriya I Praktika, 2018, vol. 13, no. 1, available at: http://www.ngtp.ru/rub/9/10_2018.pdf |
DOI | https://doi.org/10.17353/2070-5379/10_2018 |
Bridge J.S., and R.V. Demicco, 2008, Earth surface processes, landforms and sediment deposits: New York, Cambridge University Press, 830 p.
Bucher K. and M. Frey, 2002. Petrogenesis of Metamorphic Rocks. Springer-Verlag; Berlin, Heidelberg; pp. 341.
Chalmers G., R.M. Bustin and I. Powers, 2009. A pore by any other name would be as small: The importance of meso- and microporosity in shale gas capacity (abs.): AAPG Search and Discovery article 90090, 1 p.: http://www.searchanddiscovery.com/abstracts/html/2009/annual/abstracts/chalmers.htm(accessed March 14, 2011).
Day-Stirrat, R.J., A. McDonnell, and L.J. Wood, 2010, Diagenetic and seismic concerns associated with interpretation of deeply buried “mobile schales”, in L. Wood, ed., Schale tectonics: AAPG Memoir 93, p. 5-27.
Glasmacher U.A, Bauer W., Clauer N., Puchkov V.N., 2004. Neoproterozoic metamorpishm and deformation at the southeastern margin of the East European Craton Uralides, Russia. International Journal of Earth Sciences (Geol Rundsch) (2004) November 2004, Volume 93, Issue 5, pp. 921–944. DOI: https://doi.org/10.1007/s00531-004-0426-3
Jacob G., H.J. Kisch, and B.A. van der Pluijm, 2000. The relationship of phyllosilicate orientation, X-ray diffraction intensity ratios, and c/b fissility ratios of the Helvetic zone of the Swiss Alps and the Caledonides of Jamtland, central western Sweden: Journal of Structural Geology, 22 (2), p. 245-258.
Katsube T.J., 2000. Shale permeability and pore-structure evolution characteristics, Geological Survey of Canada. Report 2000, E15, 9 p.
Katsube T.J., M.A. Williamson, 1998. Shale petrophysical characteristics: permeability history of subsiding shales; in Shales and Mudstones II: Petrography, Petrophysics, Geochemistry and Economic Geology, (ed.) J. Schieber, W. Zimmerle, and P.S. Sethi; E. Schweizerbart Science Publishers, Stuttgart, Germany, p. 69-91.
Kisch H.J., 1990. Calibration of the anchizone: a critical comparison of illite ‘crystallinity’ scales used for definition, Journal of Metamorphic Geology, 8: 31–46. DOI: https://doi.org/10.1111/j.1525-1314.1990.tb00455.x
Kisch, H.J., 1991. Development of slaty cleavage and degree of very low grade metamorphism: a review. Journal of Metamorphic Geology, 9, pp. 735–750. DOI: https://doi.org/10.1111/j.1525-1314.1991.tb00562.x
Kubler B., 1967. La cristallinite de l'illite et les zones tout a fait superieures du metamorphisme, in: Colloque sur les etages tectoniques, 1966, Neuchatel, Ed. La Braconniere, 105-122.
Loucks R.G., M.R. Reed, S.C. Ruppel and U. Hammes, 2012. Spoctrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores, AAPG Bulletin, v. 96, no. 6 (June 2012), pp. 1071–1098. DOI: https://doi.org/10.1306/08171111061
Mastalerz, M., A. Schimmelmann, A. Drobniak, and Y. Chen, 2013, Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion, AAPG Bulletin, v. 97, no. 10 (October 2013), pp. 1621–1643. DOI: https://doi.org/10.1306/04011312194
Merriman, R.J., Peacor, D.R., 1999. Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. In: Frey, M., Robinson, D. (Eds.), Low-grade metamorphism. Blackwell Science, Oxford, pp. 10–60.
Microstructure of fine-grained sediments: from mud to shale, 1991. Editors: Bennett, R.H., Bryant, W.R., Hulbert, M.H., Associated Editors: Chiou, W.A., Faas, R.W., Kasprowicz, J., Li, H., Lomenick, T., O`Brien, N.R., Pamukcu, S., Smart, P., Weaver, C.E., Yamamoto, T. Springer New York. 1991, 566 p. DOI: https://doi.org/10.1007/978-1-4612-4428-8
Mondol, N.H., K. Bjorlykke, J. Jahren, and K. Hoeg, 2007, Experimental mechanical compaction of clay mineral aggregates - changes in physical properties of mudstones during burial: Marine and Petroleum Geology, v. 24, p. 289–311. DOI: https://doi.org/10.1016/j.marpetgeo.2007.03.006
Nelson, H.P., 2009. Pore throat sizes in sandstones, tight sandstones and shale: AAPG, V. 93, no 3, 329-340 p. DOI: https://doi.org/10.1306/10240808059
Neuzel, C.E., 1994, How permeable are clays and shales? Water Resources Research, vol. 30, no. 2 (February 1994), p. 145-150.
Park A.F., 2009. Cleavages developed in mudstone during diagenesis and deformation: an example from the Carboniferous (Tournaisian), southeastern New Brunswick, Canada: Atlantic Geology 45 (2009), pp. 204–216. DOI: https://doi.org/10.4138/atlgeol.2009.010
Passchier, C.W., Trouw, R.A.J., 2005. Microtectonics. Springer-Verlag Berlin Heidelberg, 366 p. DOI: https://doi.org/10.1007/3-540-29359-0
Rouquerol, J., D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D. F. Sing and K.K. Unger, 1994. Recommendations for the characterization of porous solids: Pure and Applied Chemistry, v. 66, p. 1739–1758. DOI: https://doi.org/10.1351/pac199466081739
Rushing, J.A., 2014. Petrophysics of Shale Reservoirs: Understanding the rocks, pores, fluids and their interactions. AMU PETE 631 Lecture College Station, TX (USA) - 07 April 2014. 102 p. http://www.pe.tamu.edu/blasingame/data/z_zCourse_Archive/P631_14A/P631_14A_Lectures/P631_14A_Lec_xx_...
Schieber, J., 2011. Shale microfabrics and pore development - An overview with emphasis on the importance of depositional processes, Recovery – 2011 CSPG CSEG CWLS Convention, 4 p.
Schmoker J.W., 1995. Method for assessing continuous-type (unconventional) hydrocarbon accumulations, in Gautier D.L., Dolton G.L., Takahashi K.I, and Varens K.L., eds., 1995, 1995 National assessment of United States oil and gas resources – Results, methodology, and supporting data: U.S. Geological Survey Bulletin Data Series DDS-30, 1 CD-ROM.
Syed A.A., Clark W.J., Moore W.R., Dribus J.R., 2010. Diagenesis and reservoir quality // Oilfield Review Summer 2010:22, no.2. – 14-27 p. https://www.slb.com/~/media/Files/resources/oilfield_review/ors10/sum10/composite.pdf
TXCO Resources, 2009, The emerging resource company, TXCO Resources: Howard Weil 37th Annual Energy Conference, New Orleans, March 22–29, 2009, 35. http://www.scribd.com/doc/20128412/The-Emerging-Resource-Company (accessed March 25, 2011)
Van der Pluijm, B.A. & Kaars-Sijpesteijn, C.H., 1983. Chlorite-mica aggregates: morphology, orientation, development and bearing on cleavage formation in very low-grade rocks. Journal of Structural Geology, V.6, pp. 399-407.
Van Sickel, W.A., Kominz, M.A., Miller, K.G., & Browning, J.V. (2004). Late Cretaceous and Cenozoic sea-level estimates: Backstripping analysis of borehole data, onshore New Jersey. Basin Research, 16(4), 451-465. DOI: https://doi.org/10.1111/j.1365-2117.2004.00242.x
Vazquez M., L. Asebriy, A. Azdimousa, A. Jabaloy, G. Booth-Rea, L. Barbero, M. Mellini, F. Gonzalez-Lodeiro, 2013. Evidence of extensional metamorphism associated to Cretaceous rifting of the North-Maghrebian massive margin: The Tanger-Ketama Unit (External Rif, northern Morocco): Geologica Acta, Vol. 11, N3, September 2013, pp. 277-293. DOI: https://doi.org/10.1344/105.000001843
Weaver C.E., 1984. Shale-Slate Metamorphism in Southern Appalachians Developments in Petrology. V. 10, 239 p.
Winkler, H.G.F., 1974. Petrogenesis of Metamorphic Rocks. English editor E. Froese. Springer Study Edition, 3rd edition, Springer-Verlag, Berlin, Heidelberg, New York. 320 p.
Article # 32_2016 | submitted on 07/31/2016 displayed on website on 09/28/2016 |
22 p. | Averyanova O.Yu., Morariu D. |
Assessments complexity of petroleum systems hydrocarbon potential | |
The current level of hydrocarbon potential evaluation of unconventional hydrocarbon accumulations is analysed. The approaches to the evaluation of technically recoverable hydrocarbon resources from source rocks of various sedimentary basins are discussed, for this purpose the calculations based on parameters of selected petroleum systems and their geochemical characteristics are applied.
Keywords: petroleum system, source rocks, hydrocarbon technically recoverable resources, hydrocarbon potential evaluation. |
|
article citation | Averyanova O.Yu., Morariu D. Variativnost' otsenok uglevodorodnogo potentsiala neftegazovykh sistem [Assessments complexity of petroleum systems hydrocarbon potential]. Neftegazovaya Geologiya. Teoriya I Praktika, 2016, vol. 11, no. 3, available at: http://www.ngtp.ru/rub/6/32_2016.pdf |
DOI | https://doi.org/10.17353/2070-5379/32_2016 |
Al Duhailan M. Petroleum-expulsion fracturing in organic-rich shales: genesis and impact on unconventional pervasive petroleum systems. - Colorado School of Mines, 2014 – 227 r.
Aver'yanova O.Yu. Neftegazovye sistemy slantsevykh materinskikh formatsiy [Petroleum systems of shale source formations]. Synopsis of dissertation for the degree of PhD in geological and mineralogical sciences. St. Petersburg: VNIGRI, 2015, 24 p.
Bazhenova T.K. Bituminoznye tolshchi Rossii i otsenka resursov UV [Bituminous strata of Russia and hydrocarbon resources evaluation]. Trudnoizvlekaemye zapasy i netraditsionnye istochniki uglevodorodnogo syr'ya. Problemy, perspektivy, prognozy: Proceedings of the conference. St. Petersburg: VNIGRI, 2015. 1 CD-R
Doust H. Sedimentary basin evolution and conventional and unconventional petroleum system development. Swiss bulletin for applied geology. - 2011. - V. 16/2. - PP. 57-62. DOI: https://doi.org/10.5169/seals-327745
EIA: World Shale Gas and Shale Oil Resource Assessment. Report prepared for US Energy Information Administration by Advanced Resources International Inc., May, 17, 2013. URL: http://www.eia.gov
Khant Dzh. Geokhimiya i geologiya nefti i gaza [Geochemistry and geology of oil and gas]. Moscow: Mir, 1982, 704 p.
Lopatin N.V. Kontseptsiya neftegazovykh generatsionno-akkumulyatsionnykh sistem kak integriruyushchee nachalo v obosnovanii poiskovo-razvedochnykh rabot [The concept of petroleum generation-accumulative systems as the integrating principle in exploration substantiation]. Geoinformatika, 2006, no. 3, p. 101–120.
Meyer P.K. Shale source rocks a game-changer due to 8-to-1 resource potential. Oil & Gas Journal 05/07/2012. http://www.ogj.com/articles/print/vol-110/issue-5/exploration-development/shale-source-rocks-a-game....
Neft' i gaz nizkopronitsaemykh slantsevykh tolshch - rezerv syr'evoy bazy uglevodorodov Rossii [Oil and gas in low-permeability shale strata - Russia reserves of raw hydrocarbon base]. O.M. Prishchepa, O.Yu. Aver'yanova, A.A. Il'inskiy, D. Morariu; Editor. O.M. Prischepa St. Petersburg: VNIGRI, 2014, 323 p. Trudy VNIGRI.
Neruchev S.G., Smirnov S.V. Otsenka potentsial'nykh resursov uglevodorodov na osnove ontogeneza [Assessment of potential hydrocarbon resources on the basis of ontogenesis]. Teoriya i praktika neftegeologicheskogo prognoza: sb. statey. St. Petersburg: VNIGRI, 2008, p. 7-26.
Neruchev S.G., Vassoevich N.B., Lopatin N.V. O shkale katageneza v svyazi s neftegazoobrazovaniem [On the scale of katagenesis in connection with oil and gas formation]. Proceedings of the International Geological Congress. Reports of Soviet geologists. Fossil Fuels. Moscow: Nauka, 1976, p. 42-62.
Prischepa O., Aver'yanova O. Neftegazonosnye slantsy Vostochno-Evropeyskoy platformy [Oil and gas bearing shales of the East European platform]. Oil & Gas Journal Russia, 2014, no. 1-2, p. 48-52.
Prischepa O.M. Kompleksnyy sposob kolichestvennoy otsenki resursov nefti i gaza v zonakh neftegazonakopleniya [Comprehensive way to quantify the oil and gas resources in petroleum accumulation areas]. Neftegazovaya geologiya. Teoriya i praktika, 2011, vol. 6, no. 4, http://www.ngtp.ru/rub/6/44_2011.pdf
Spravochnik po geokhimii nefti i gaza [Handbook on geochemistry of oil and gas]. Editor S.G. Neruchev. St. Petersburg: Nedra, 1998, 576 p.
Article # 25_2016 | submitted on 07/06/2016 displayed on website on 07/20/2016 |
9 p. | Prischepa O.M., Averyanova O.Yu. |
The tenth anniversary of the online scientific journal «Petroleum Geology. Theoretical and Applied Studies» | |
The purpose of launching and goals of scientific online journal «Petroleum Geology. Theoretical and Applied Studies» are presented. A review of selected publications in journal’s sections is provided. The ways and character of the online journal development are outlined.
Keywords: scientific online journal, information management, petroleum geology. |
|
article citation | Prischepa О.M., Averyanova O.Yu. K desyatiletiyu pervogo nomera elektronnogo zhurnala «Neftegazovaya geologiya. Teoriya i praktika» [The tenth anniversary of the online scientific journal «Petroleum Geology. Theoretical and Applied Studies»]. Neftegazovaya Geologiya. Teoriya I Praktika, 2016, vol. 11, no. 3, available at: http://www.ngtp.ru/rub/3/25_2016.pdf |
DOI | https://doi.org/10.17353/2070-5379/25_2016 |
Khalimov E.M., Averyanova O.Yu. K pyatiletiyu vypuska pervogo nomera elektronnogo zhurnala «Neftegazovaya geologiya. Teoriya i praktika» [The fifth anniversary of scientific electronic journal «Petroleum Geology. Theoretical and Applied Studies»]. Neftegazovaya Geologiya. Teoriya I Praktika, 2012, vol. 7, no. 2, available at: http://www.ngtp.ru/rub/3/28_2012.pdf
Openstat – system of web analytics. - https://www.openstat.com/
Article # 11_2016 | submitted on 02/12/2016 displayed on website on 03/28/2016 |
30 p. | Averyanova O.Yu. |
Domanik type petroleum systems in Timan-Pechora sedimentary basin | |
The organic matter riche, low porosity and low permeability claystone belonging to Semiluky strata are parallelized with sequences of Domanik type in the Timan-Pechora basin. Domanik type section and the Late Frasnian - Early Famennian facial sequences analogues corresponding to this level are mapable on the regional scale. Some of petroleum systems of the Timan-Pechora Basin are analyzed: Domanik-Famennian Upper-Paleozoic-Triassic, Domanik unconventional, Wenlockian-Lower Devonian Upper-Paleozoic-Triassic, Artinskian-Kungurian Permian-Triassic.
Keywords: hydrocarbon generation, petroleum system, unconventional petroleum system, Timan-Pechora sedimentary basin. |
|
article citation | Averyanova O.Yu. Neftegazovye sistemy domanikovogo tipa Timano-Pechorskogo osadochnogo basseyna [Domanik type petroleum systems in Timan-Pechora sedimentary basin]. Neftegazovaya Geologiya. Teoriya I Praktika, 2016, vol. 11, no. 1, available at: http://www.ngtp.ru/rub/12/11_2016.pdf |
DOI | https://doi.org/10.17353/2070-5379/11_2016 |
Ahlbrandt T.S., Charpentier R.R., Klett T.R., Schmoker J., Schenk C.J.; G. Ulmishek (eds.) Global Resource Estimates from Total Petroleum Systems // AAPG Memoir 86. - 2005. - 324 p. |
Article # 17_2015 | submitted on 04/10/2015 displayed on website on 04/30/2015 |
25 p. | Averyanova O.Yu. |
Petroleum systems of some European sedimentary basins | |
Petroleum systems of several different basins of Europe are presented: Central Alpine Molasse basin, Carpathian Moldavids Unit, Baltic Syneclise and Timan-Pechora Basin. The forecasting role of petroleum systems in the analysis of petroleum prospectivity of sedimentary basins and evaluation of exploration targets is emphasized. Keywords: petroleum systems, petroleum basins of Europe, oil and gas potential, petroleum prospectivity, exploration target. |
|
article citation | Averyanova O.Yu. Neftegazovye sistemy nekotorykh osadochnykh basseynov Evropy [Petroleum systems of some European sedimentary basins]. Neftegazovaya Geologiya. Teoriya I Praktika, 2015, vol. 10, no. 2, available at: http://www.ngtp.ru/rub/12/17_2015.pdf |
DOI | https://doi.org/10.17353/2070-5379/17_2015 |
Boik H. Petroleum and natural gas in West Germany. Stuttgart: F. Enke Publishers, 1981.
Borosi N., Gherman M. Development strategies of the Romanian petroleum sector in the light of 150 years of experience. Bucuresti. 2007.
Cohen K.M., Finney S., Gibbard P.L. International Chronostratigraphic Chart, October 2014. International Commission on Stratigraphy. V. 2014/10. - http://www.stratigraphy.org/ICSchart/ChronostratChart2014-01.pdf
Fossum B.J., Grant N.T., Byurchieva B.V. Petroleum System Evaluation of the Korotaikha Fold-belt and Foreland Basin, Timan-Pechora Basin, Russia: Adapted from poster presentation. AAPG Annual Convention and Exhibition, Pittsburgh, PA, May 19-22, 2013 http://www.searchanddiscovery.com/pdfz/documents/2013/10491fossum/ndx_fossum.pdf.html
Fossum B.J., Schmidt W.J., Jenkins D.A., Bogatsky V.I., Rappoport B.I. New Frontiers for Hydrocarbon Production in the Timan-Pechora Basin, Russia, in Downey M.W., et al. eds. Petroleum provinces of the twenty-first century. AAPG Memoir 74, 2001, chap. 13, pp. 259-279.
Guerrera F., Martin M.M., Martin-Perez J.A., Martin-Rojas I., Miclaus C., Serrano F. Tectonic Control On The Sedimentary Record Of The Central Moldavidian Basin (Eastern Carpathians, Romania). Geologica Carpathica. Vol. 63, No. 6, 2012. P. 463-479. http://dx.doi.org/10.2478/v10096-012-0036-0
Gusterhuber J., Hinsch R., Linzer H.-G., Sachsenhofer R. Hygrocarbon generation and migration from sub-thrust source rocks to foreland reservoirs: The Austrian Molasse Basin. Austrian Journal of Earth Sciences, 2013. V. 106/2, pp.115-136.
Kanev S., Margulis L., Bojesen-Koefoed J.A., Weil W.A., Merta H., Zdanaviciute O. Oils and hydrocarbon source rocks of the Baltic sineclyse. Oil & Gas Journal. – 1994. – July. – pp. 69-73.
Klett T.R., Ahlbrabdt T.S., Schmoker J.W., Dolton G.L. Ranking of the world`s oil and gas provinces by known petroleum volumes: U.S. Geological Survey. Open File Report 97-463, 1997, one CDR.
Lindquist S.J. The Timan-Pechora basin province of northwest Arctic Russia: Domanik – Paleozoik total petroleum system: U.S. Geological Survey Open-File Report 99-50-G, 1999. 40 P.
Luk'yanova N.V. Bogdanov Yu.B., Vasil'eva O.V., Vargin G.P., Verbitskiy V.R., Gorbatsevich N.R., Zhamoyda V.A., Zytner Yu.I., Kirikov V.P., Maksimov A.V., Nikutina N.G., Semenova L.R., Sivkov V.V., Fenin G.I. Gosudarstvennaya geologicheskaya karta Rossiyskoy Federatsii. Masshtab 1:1000000 (tret'e pokolenie). Seriya Tsentral'no-Evropeyskaya. List N-(34) – Kaliningrad. Ob"yasnitel'naya zapiska [State geological map of Russian Federation. Scale 1: 1,000,000. Central European Series. Sheet N-(34) - Kaliningrad. Explanatory note]. Saint Peersburg: Kartfabrika VSEGEI, 2011, 226 p.
Magoon, L.B., and Beaumont, E.A. Petroleum system, in Beaumont, E.A. and Foster N.H., eds., Exploring for oil and gas traps. AAPG Treatise of Petroleum Geology, 1999. Chap. 3, p. 3.1-3.34.
Magoon, L.B., Dow W.G. The petroleum system, in L.B. Magoon, and W.G. Dow, eds., The Petroleum system – From source to trap. AAPG Memoir 60, 1994, pp. 3-24.
Magoon, L.B., Schmoker J.W. The total petroleum system – The natural fluid network that constrains the assessment unit, Chap. PS, in U.S. Geological Survey World Energy Assessment Team, U.S. Geological Survey World Petroleum Assessment 2000 – Description and results, USGS Digital Data Series DDS-60, Version 1.0, CD-ROM, Disk one, 2000, 31 p.
Malkovsky M. The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution: in Ziegler A. eds. Compressional Intra Plate Deformations in the Alpine Foreland // Tectonophysics, 1987. V. 137 (1-4), pp. 31-42.
Matenco L., Bertotti G. Tertiary tectonic evolution of the external East Carpathians (Romania). Tectonophysics 316, 2000. P. 255-286. http://dx.doi.org/10.1016/S0040-1951(99)00261-9
McCann T. The Geology of Central Europe, Volume 2: Mesozoic and Cenozoic. London, Bath: Geological Society of London, 2008. PP. 749–1449 CDR. http://dx.doi.org/10.1017/S0016756809990331
Morariu D.C. Subtle traps in petroleum systems of Romania: PhD Thesis. Bucharest Univ., 1998.
Neft' i gaz nizkopronitsaemykh slantsevykh tolshch – rezerv syr'evoy bazy uglevodorodov Rossii [Tight oil and gas shale formations – Russia’s hydrocarbons future resources]. Prishchepa O.M., Aver'yanova O.Yu., Il'inskiy A.A., Morariu D. Editor O.M. Prishchepa. Saint Petersburg: VNIGRI, 2014, 323 p.
Neftyanye mestorozhdeniya Pribaltiki [Baltic oil fields]. Vil'nyus: Mokslas, 1987, 148 p.
Otmas A.A. (Senior), Meshcherskiy A.A., Desyatkov V.M. Neftegazonosnost' Kaliningradskogo regiona [Oil and gas potential of Kaliningrad region]. Gornyy zhurnal, 2010, no. 3, p. 25-28.
Otmas A.A. (Senior), Volchenkova T.B., Bogoslovskiy S.A., Makarova I.R. Siluriyskie tolshchi kak vozmozhnyy ob"ekt poiska uglevodorodnogo syr'ya v Kaliningradskom regione [Silurian thickness as possible object of search of hydrocarbons in the Kaliningrad region]. Abstracts of 3 Int. Scientific-practical Conference “Kaliningrad 2013. Problems and achievements of petroleum geology”. EAGO, p. 64-67.
Popescu B.M. Romanias petroleum systems and their remaining potential // Petroleum Geosience. V. 1, 1995, pp. 337-350. http://dx.doi.org/10.1144/petgeo.1.4.337
Prischepa O.M. Metodologiya i praktika vosproizvodstva zapasov nefti i gaza (Severo-Zapadnyy region) v sovremennykh usloviyakh [Methodology and practice of renewing of oil and gas reserves (North-Western region) in current conditions]. Leningrad: Nedra, 2005
Prischepa O.M., Bazhenova T.K., Bogatskiy V.I. Neftegazonosnye sistemy Timano-Pechorskogo osadochnoggo basseyna (vklyuchaya akvatorial'nuyu pechoromorskuyu chast') [Petroleum systems of the Timan-Pechora sedimentary basin (including offshore Pechora part)]. Geologiya i geofizika, 2011, vol. 52, no. 8, p. 1129-1150.
Sandulescu M. Geotectonica Romanie. Bucharest: Technical Publishing House, 1984. – 336 p.
Stefanescu M., Dicea O., Butac A., Ciulavu D. Hydrocarbon geology of the Romanian Carpathians, their foreland and the Transylvanian Basin, in Golonka J. and Picha F. (eds.) The Carpathians and their Foreland: Geology and Hydrocarbon Resources. AAPG Memoir 84, 2006, p. 521-567. http://dx.doi.org/10.1306/985619M843077
Stefanescu M., Popescu B. Romanias petroleum systems (abs.). AAPG Bulletin, 1993. V. 77, p. 1668.
Timano-Pechorskaya provintsiya: geologicheskoe stroenie, neftegazonosnost', perspektivy osvoeniya [Timan-Pechora province: geological structure, oil and gas potential and development prospects]. M.D. Belonin, O.M. Prishchepa, E.L. Teplov, G.F. Budanov, S.A. Danilevskiy. Saint Petersburg: Nedra, 2004, 396 p.
Trumpy R. Switzerland // Geology of the European countries. BORDAS and 26th International Geological Congress, Paris. - 1980. PP. 231-330.
Veron J. The Alpine Molasse Basin: review of petroleum geology and remaining potential // Bulletin fur Angewandte Geology, 2005. V. 10, pp. 75-86.
Article # 27_2013 | submitted on 05/15/2013 displayed on website on 07/04/2013 |
10 p. | Prischepa O.M., Averyanova O.Yu. |
Contributions to the terminology of hydrocarbons bearing shale formations – unconventional sources of oil and gas | |
The terminology of shale formations is discussed in the article, which is substantiated by significant growth of interest of the petroleum industry to the hydrocarbon resources in the unconventional/tight reservoir. The same interest was dedicated to the hydrocarbons bearing shale deposits found under continuous improvements of shale formations development. The main goal is to unify the terminology related to different types of hydrocarbon accumulations in unconventional tight rocks - shale formations.
Key words: petroleum potential, tight reservoir, unconventional hydrocarbon reservoir, source rocks, oil and gas from shale. |
|
article citation | Prishchepa O.M., Averyanova O.Yu. K obsuzhdeniyu ponyatiynoy bazy netraditsionnykh istochnikov nefti i gaza – slantsevykh tolshch [Contributions to the terminology of hydrocarbons bearing shale formations – unconventional sources of oil and gas]. Neftegazovaya Geologiya. Teoriya I Praktika, 2013, vol. 8, no. 3, available at: http://www.ngtp.ru/rub/9/27_2013.pdf |
DOI | https://doi.org/10.17353/2070-5379/27_2013 |
EIA - U.S. Energy Information Administration. Retrieved: March 2013, available at: https://www.eia.gov/
Morariu D., Averyanova O.Yu. Nekotorye aspekty neftenosnosti slantsev: ponyatiynaya baza, vozmozhnosti otsenki i poisk tekhnologiy izvlecheniya nefti [Some aspects of oil shale - finding kerogen to generate oil]. Neftegazovaya Geologiya. Teoriya I Praktika, 2013, vol. 8, no. 1, available at: http://www.ngtp.ru/rub/9/3_2013.pdf
Neruchev S.G., Bazhenova T.K., Smirnov S.V., Andreeva O.A., Klimova L.I. Otsenka potentsial'nykh resursov uglevodorodov na osnove modelirovaniya protsessov ikh generatsii, migratsii i akkumulyatsii [Evaluation of potential hydrocarbon resources on the basis of modeling processes of their generation, migration and accumulation]. Saint Petersburg: Nedra, 2006, 364 p.
Prishchepa O.M., Aver'yanova O.Yu. Rol' netraditsionnykh istochnikov uglevodorodnogo syr'ya v mineral'no-syr'evoy politike [The role of unconventional hydrocarbon sources in the mineral policy] // Mineral'nye resursy Rossii. Ekonomika i upravlenie, 2013, no. 1, p. 21-24.
Unconventional gas. Total, October 2012, available at: https://www.total.gov/
Article # 19_2013 | submitted on 05/15/2013 displayed on website on 06/10/2013 |
28 p. | Prischepa O.M., Averyanova O.Yu., Vysotskiy V.I., Morariu D. |
Bakken Formation: geology, development history and petroleum potential | |
The Upper Devonian and Lower Mississipian unconventional (continuous) oil resource – Bakken Formation, one of the most distinctive stratigraphic sequences in the Williston Basin (underlying parts of Montana, North Dakota, Saskatchewan and Manitoba) in USA and Canada is investigated. The geological and geochemical characteristics of the Bakken-Lodgepole section and its petroleum system are discussed. The development history of Bakken Formation is outlined. The production rate from tight reservoirs of Bakken Formation has increased significantly due to the implementation of new horizontal drilling technology with multy-stage formation hydraulic fracturing.
Key words: tight reservoir, petroleum potential, horizontal drilling, petroleum system, shale, Bakken Formation. |
|
article citation | Prishchepa O.M., Averyanova O.Yu., Vysotskiy V.I., Morariu D. Formatsiya Bakken: geologiya, neftegazonosnost' i istoriya razrabotki [Bakken Formation: geology, development history and petroleum potential ]. Neftegazovaya Geologiya. Teoriya I Praktika, 2013, vol. 8, no. 2, available at: http://www.ngtp.ru/rub/9/19_2013.pdf |
DOI | https://doi.org/10.17353/2070-5379/19_2013 |
DMR - North Dakota Industrial Commission, Department of Mineral Resources, Oil and Gas Division, available at: https://www.dmr.nd.gov/
EIA - U.S. Energy Information Administration, available at: https://www.eia.gov/
Flannery, J., and Kraus, J., 2006, Integrated analysis of the Bakken Formation: U.S. Williston Basin: American Association of Petroleum Geologists Search and Discovery Article No. 10105.
IHS Energy Group, 2009, Petroleum Information/Dwights PetroROM, U.S. well production file on CD-ROM: Houston, Tex., IHS Energy Group.
Jarvie, D. M., 2001. Williston Basin Petroleum Systems: Inferences from Oil Geochemistry and Geology // The Mountain Geologist, Vol. 38, No. 1 (January 2001), p 19-41.
Mason J. Oil Production Potential of the North Dakota Bakken // Oil & Gas Journal February 10, 2012.
Meissner, F.F. and Banks, R.B., 2000, Computer simulation of hydrocarbon generation, migration, and accumulation under hydrodynamic conditions – examples from the Williston and San Juan Basins, USA: American Association of Petroleum Geologists Search and Discovery Article #40179
NASA дата просмотра 12/11/2012 http://eoimages.gsfc.nasa.gov/images/imagerecords/ 79000/79810/ bakken_vir_2012317.jpg
Osadetz, K. G. and Snowdon, L. R., 1995. Significant Paleozoic petroleum source rocks, their distribution, richness and thermal maturity in Canadian Williston Basin, (southeastern Saskatchewan and southwestern Manitoba). Geological Survey of Canada, Bulletin 487, 60 p.
Pitman, J.R., Price, L.C. and LeFever J.A., 2001. Diagenesis and Fracture Development in the Bakken Formation, Williston Basin: Implications for Reservoir Quality in the Middle Member. USGS Professional Paper, Report #P 1653, 19 p.
Pollastro, R.M., Roberts, L.N.R., and Cook, T.A., 2011, Geologic assessment of technically recoverable oil in the Devonian and Mississippian Bakken Formation, chap. 5 of U.S. Geological Survey Williston Basin Province Assessment Team, Assessment of undiscovered oil and gas resources of the Williston Basin Province of North Dakota, Montana, and South Dakota, 2010: U.S. Geological Survey Digital Data Series DDS–69–W, 34 p.
Price, L.C., Ging, T., Daws, T., Love, A., Pawlewicz, M., and Anders, D., 1984, Organic metamorphism in the Mississippian–Devonian Bakken Shale North Dakota portion of the Williston Basin, in Woodward, J., Meissner, F.S., and Clayton, J.L., eds., Hydrocarbon source rocks of the greater Rocky Mountain region: Rocky Mountain Association of Geologists, p. 83–133.
Prishchepa O.M., Aver'yanova O.Yu. Rol' netraditsionnykh istochnikov uglevodorodnogo syr'ya v mineral'no-syr'evoy politike [Role of unconventional hydrocarbon resources in the mineral policy]. Mineral'ne resursy Rossii. Ekonomika i upravlenie, 2013, no. 1, p. 21-24.
Rogers Oil&Gas Consulting, March 2013 http://www.bgrodgers.com/
Schmoker, J.W., and Hester, T.R., 1983, Organic carbon in Bakken Formation, United States portion of the Williston Basin: American Association of Petroleum Geologists Bulletin, v. 67, p. 2165–2174.
Sonnenberg S.A, 20011. The Bakken Petroleum System of the Williston Basin: a Tight Oil Resource Play http://denverpetroleumclub.com/2011-05-12-Sonnenberg.pdf
Surdam, R.C., Crossey, L.J., Hagen, E.S., and Heasler, H.P., 1989, Organic-inorganic interactions and sandstone diagenesis: American Association of Petroleum Geologists Bulletin, v. 73, p. 1–23.
Sweeney, J.J., Gosnold, W.D., Braun, R.I., and Burnham, A.K., 1992, A chemical kinetic model of hydrocarbon generation from the Bakken Formation, Williston Basin, North Dakota: Lawrence Livermore National Laboratory Report UCRL-ID-112038, 57 p.
University of North Dakota Energy & Environmental Research Center, 2013
USGS. U.S. Geological Survey petroleum resource assessment of the Bakken Formation, Williston Basin Province, Montana and North Dakota. http://www.usgs.gov/
Vysotskiy V.I. Est' li budushchee u slantsevogo gaza v Rossii? [Is there a future of shale gas in Russia?]. Neft' i zhizn', 2011, no. 4(64), p. 10-11.
Webster, R.L., 1984, Petroleum source rocks and stratigraphy of the Bakken Formation in North Dakota, in Woodward, J., Meissner, F.F., and Clayton, J.L., eds., Hydrocarbon source rocks of the greater Rocky Mountain region: Denver, Colo., Rocky Mountain Association of Geologists, p. 57–81.
Webster, R.L., 1987, Petroleum source rocks and stratigraphy of the Bakken Formation in North Dakota, in Peterson, J.A., Kent, D.M., Anderson, S.B., Pilatzke, R.H., and Longman, M.W., eds., Williston Basin; anatomy of a cratonic oil province: Denver, Colo., Rocky Mountain Association of Geologists, p. 269–286.
Article # 3_2013 | submitted on 11/28/2012 displayed on website on 01/16/2013 |
18 p. | Morariu D., Averyanova O.Yu. |
Some aspects of oil shale - finding kerogen to generate oil* | |
*The article is presented in two languages, English and Russian. Oil demand is predicted to continue to increase despite the high price of oil. The lagging supply increased the prices for oil and gas and a definitive oil replacement has still not been found. Huge oil shale resources discovered in the world, if developed, may increase petroleum supplies. Developing of oil shale needs the availability of low cost production; the greatest risks facing oil shale developing are higher production expenses and lower oil prices. There are several technologies for producing oil from kerogen bearing oil shale, by pyrolysis (heating, retorting). Oil shale is still technologically difficult and expensive to produce and the major impediment is cost. Developing oil shale accumulations means to face huge challenges, but an efficient oil shale development can be accomplished and an acceptable oil shale industry based on new technologies can be built nowadays. Key words: shale, continuous accumulation, oil shale, shale oil, total organic carbon, Rock-Eval, reserves estimation, Fischer assay, mining and retorting, in situ retorting and extraction, in capsule extraction. |
|
article citation | Morariu D., Averyanova O.Yu. Nekotorye aspekty neftenosnosti slantsev: ponyatiynaya baza, vozmozhnosti otsenki i poisk tekhnologiy izvlecheniya nefti [Some aspects of oil shale - finding kerogen to generate oil]. Neftegazovaya Geologiya. Teoriya I Praktika, 2013, vol. 8, no. 1, available at: http://www.ngtp.ru/rub/9/3_2013.pdf |
DOI | https://doi.org/10.17353/2070-5379/3_2013 |
Andrews, A., 2008, Development in oil shale, CRS Report for Congress, Service-Order Code RL34748.
Annual Energy Outlook, 2009, U.S. Energy Information Administration - Official Energy Statistics from the U.S Government.
Beckwith, R., Writter S., 2012, The tantalizing promise of oil shale, JTP online.
Bordenave, M.L., 1993, Applied petroleum geochemistry, editions Technip, Paris, 524 p.
Denning, D., 2012, Oil shale reserves: stinky water, sweet oil, daily reckoning, retrieved 03-09-2012.
Downey M.W., Garvin, J., Lagomarsino, R.C., Nicklin D.F., 2011, Quick look determination of oil-in-place in oil shale resource plays, adapted for oral presentation at AAPG Annual Convention and Exhibition, Huston, Texas, USA, April 10-13, 2011.
Dyni, J.R., 2006, Geology and resources of some world oil-shale deposits: U.S. Geological Survey Scientific Investigations report 2005-5294, 42 p.
Dyni, J.R., Johnson R.C., 2006, Will oil shale be a major player? AAPG Explorer, v. 27, no. 5, p. 41, 39.
EIA (U.S. Energy Information Administration), 2009, Focus released, AEO2009, 2 p.
Hutton, A.C., 1987, Petrographic classification of oil shales, International Journal of Coal Geology 1987, Elsevier, vol. 8, p. 203-231.
Inglesby, T., Jenks, R., Nyquist S., Pinner, D., 2012 Shale gas and tight oil: framing the opportunities and risks, McKinsey, New York City, 6 p.
Jarvie, D., 2004, Evaluation of hydrocarbon generation and storage in the Barnett shale, Ft. Worth Basin, Texas, Special BEG/PTTC presentation 116 p.
Johnson, H.R., P.M. Crawford, and J.W. Bunger, 2004, Strategic significance of America’s oil shale resource, v. 2, Oil shale resources, technology, and economics: U.S. Department of Energy Office of Naval Petroleum and Oil Shale Reserves, 57 p.
Johnson, R.C., Mercier, T.J. a Self, J.G. 2010, An assessment of in place oil shale resources in the Green River Formation, Piceance Basin: U.S. Geological Survey Digital Data Series DDS-69-Y, chp.1, 197 p.
Klett, T.R., Charpentier, R.R., 2006, FORSPAN Model Users Guide, U.S .Geological Survey Open-File Report 03-354.
Laherrere, J.H., 2005, Review on oil shale data, September 2009, retrieved 10.10.2012.
Laherrere, J.H., 2007, What’s wrong with reserves? Petroleum Africa, vol. 5, issue 2, p. 24-28.
Miller, G.A., 2007, Some perspectives on various methods of oil shale extraction Piceance basin, Colorado, 27th Oil Shale Symposium Colorado School of Mines Colorado, 15 p.
Qian J., Wang, J., 2006, International conference on oil shale: Recent trend in oil shale 7-9 November 2006, Amman, Jordan, 11 p.
Randal, B., 2009, A Colorado viewpoint on the development of oil shale resources, Oil Shale Symposium Colorado School of Mines 19-21 October 2009.
Red Leaf Resources, Inc Company site 2012.
Schmoker, J.W., 1996, A resource evaluation of the Bakken Formation (Upper Devonian and Lower Mississippian ) continuous oil accumulation, Williston Basin, North Dakota and Montana: The Mountain Geologist, v.33, no.4, p. 95-104.
Schmoker, J.W., Klett, T.R., 2005, U.S. Geological Survey assessment concepts for conventional petroleum accumulation, U.S. Geological Survey digital data series DDS-69-D.
Survey of Energy Resources, 2010, Oil shale commentary, World Energy Council, London.
Taylor, O.G. 1987, Oil shale, water resources and valuable minerals of the Piceance Basin, Colorado –the challenge and choices of development , USGS Professional Paper -1310.
U.S. Department for Energy, Resources – Fact sheet 2004, U.S. 2004, Office of Petroleum Reserves - Oil shale water.
U.S. Department for Energy, 2005, Office of Petroleum Reserves-Oil shale resources, Fact sheet 2005.U.S.
Yergin, D., 2012, Shale could redefine U.S. economy, UPI.com, 24 October 2012, retrieved 25.10.2012.
Article # 28_2012 | submitted on 05/05/2012 displayed on website on 05/21/2012 |
11 p. | Khalimov E.M., Averyanova O.Yu. |
The fifth anniversary of scientific electronic journal «Petroleum Geology. Theoretical and Applied Studies» | |
The purpose of launching and goals of scientific electronic journal «Petroleum Geology. Theoretical and Applied Studies» are presented. A review of selected publications in journal’s sections is provided. The ways of electronic journal development are outlined.
Key words: scientific electronic journal, online edition, information management, petroleum geology. |
|
article citation | Khalimov E.M., Averyanova O.Yu. K pyatiletiyu vypuska pervogo nomera elektronnogo zhurnala «Neftegazovaya geologiya. Teoriya i praktika» [The fifth anniversary of scientific electronic journal «Petroleum Geology. Theoretical and Applied Studies»]. Neftegazovaya Geologiya. Teoriya I Praktika, 2012, vol. 7, no. 2, available at: http://www.ngtp.ru/rub/3/28_2012.pdf |
GeoRef. – URL: http://www.agiweb.org/georef/ |
Article # 26_2010 | submitted on 05/24/2010 displayed on website on 05/28/2010 |
15 p. | Prischepa O.M., Orlova L.A., Averyanova O.Yu. |
North-Western region as the mirror of the All-Russian tendencies in exploration | |
In recent years the Timan-Pechora petroleum province takes a leader position in petroleum production volumes and the pace of preparing the country oil resource base. The regional and departmental programs now in force as well as the actualized “Program of complex developing the hydrocarbon resources of the Russian North-Western region up to 2010” allowed to have a positive influence on the pace of renewing the hydrocarbon reserves of the region.
On the one hand, the economic stability of companies-subsurface users performing their obligations and, on the other hand, enhancing the exploration maturity of new districts due to the scientifically substantiated pace of regional researches are favorable to reserve growth and increasing the volumes of exploration works. However, under “crisis” economic conditions there is need to create a centralized fund or use specialized assignment for maintaining the volumes and pace of exploration works.
Key words: Timan-Pechora petroleum province, volume and pace of exploration works, renewal of hydrocarbon reserves, subsurface use. |
|
article citation | Prischepa O.M., Orlova L.A., Averianova O.Yu. North-Western region as the mirror of the All-Russian tendencies in exploration // Neftegazovaya Geologiya. Teoriya I Praktika. – 2010. - V.5. - #2.- http://www.ngtp.ru/rub/6/26_2010.pdf |
Article # 11_2008 | displayed on website on 02/26/2008 |
12 p. | Averyanova O.Yu. |
Role of electronic editions in the efficient spreading of native geological science achievements | |
Information resources, in the light of fast changing scientific demands through the organization of a fast access to information sources, perform its important task - the service of science and education at a modern technical-technological level. The paper is devoted to describing the new VNIGRI project - creating the accessible scientific electronic journal Oil-gas geology. Theory and practice. The high scientific level of the publications in this journal will allow it performing the scientific-research, educational, enlightener and information functions in the sphere of oil-gas geology. The practical objective of creating such a journal is the introduction of an electronic edition in branch scientific medium for enhancing the efficiency of scientific-research works. Key words: electronic scientific journal, information resources, Russian science, oil-gas geology, impact-factor of the journal, index of citing. |
|
article citation | Averyanova O.Yu. Role of electronic editions in the efficient spreading of native geological science achievements // Neftegazovaya Geologiya. Teoriya I Praktika. - 2008. - V.3. - #1.- http://www.ngtp.ru/rub/3/11_2008.pdf |