Kalacheva L.P.
lpko@mail.ru
Graduated from Irkutsk State University (1993), specialization "chemistry".
PhD in Chemistry.
Leading Researcher of Institute of Oil and Gas Problems of the Siberian Branch of Russian Academy of Sciences (IOGP SB RAS).
Area of scientific interests: gas hydrates, thermodynamics of phase transitions, kinetics of hydrate formation and decomposition.
Author of 120 publications, 1 patent.
Article # 43_2023 | submitted on 10/20/2023 displayed on website on 11/28/2023 |
18 p. | Kalacheva L.P., Ivanova I.K., Portnyagin A.S., Ivanov V.K., Argunova K.K., Bubnova А.R. |
Assessment of the possibility of carbon dioxide burial in a hydrate state in the sub-permafrost aquifers of the Vilyuy syneclise | |
The paper presents the results of experimental studies of the carbon dioxide hydrates formation and decomposition processes in porous media with different types of salinity using the method of differential thermal analysis. Equilibrium conditions of carbon dioxide hydrate formation in porous media salinized with solutions of bicarbonate and sodium chloride, the concentration of which corresponds to the composition and mineralization of sheet waters in the sub-permafrost aquifers of the Vilyuy syneclise, were obtained. The boundaries of the carbon dioxide hydrate stability zone were assessed using as the example a geological exploration area 15-Kenkemen. It has been established that, depending on thermobaric conditions and depth, hydrate formation processes can occur from water (ice) and gaseous and liquid carbon dioxide. Keywords: carbon dioxide hydrate, porous media, equilibrium conditions of hydrate formation, carbon dioxide hydrate stability zone, sub-permafrost aquifers, sodium bicarbonate, sodium chloride, Vilyuy syneclise. |
|
article citation | Kalacheva L.P., Ivanova I.K., Portnyagin A.S., Ivanov V.K., Argunova K.K., Bubnova А.R. Otsenka vozmozhnosti zakhoroneniya uglekislogo gaza v gidratnom sostoyanii v podmerzlotnykh vodonosnykh gorizontakh Vilyuyskoy sineklizy [Assessment of the possibility of carbon dioxide burial in a hydrate state in the sub-permafrost aquifers of the Vilyuy syneclise]. Neftegazovaya Geologiya. Teoriya I Praktika, 2023, vol. 18, no. 4, available at: http://www.ngtp.ru/rub/2023/43_2023.html EDN: DLKKNY |
Bachu S. Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Conv. Mgmt., 2000, vol. 41, pp. 953-970.
Carlson H.A. The pH of water from gas-condensate well saturated with carbon dioxide at various pressures. Petr. Eng., 1946, vol. 18, no. 2, pp. 160-164.
Chuvilin E.M., Guryeva O.M. Eksperimental'noe izuchenie obrazovaniya gidratov CO2 v porovom prostranstve promerzayushchih i merzlyh porod [Experimental investigation of CO2 gas hydrate formation in porous media of frozen and freezing sediments]. Kriosfera Zemli, 2009, XIII, no. 3, pp. 70-79.
Chuvilin E.M., Guryeva O.M. The role of hydrate formation processes in industrial СО2 sequestration in permafrost area, in: Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), 2011, p. 220.
Duchkov A.D., Sokolova L.S., Ayunov D.E., Permyakov M.E. Ocenka vozmozhnosti zaxoroneniya uglekislogo gaza v kriolitozone Zapadnoy Sibiri [Assesment of potential of West Siberian permafrost for the carbon dioxide storage]. Kriosfera Zemli, 2009, XIII, no. 4, pp. 62-68.
Duchkov A.D., Zheleznyak M.N., Sokolova L.S., Semenov V.P. Zony stabil`nosti gidratov metana i dioksida ugleroda v osadochnom chexle Vilyujskoy sineklizy [Methane and carbon dioxide hydrate stability zones in the sedimentary cover of the Vilyui syneclise]. Kriosfera Zemli, 2019, XXIII, no. 6, pp. 19-26.
Gaidukova O., Misyura S., Morozov V., Strizhak P. Gas Hydrates: Applications and Advantages. Energies, 2023, 16(6), 2866. DOI: 10.3390/en16062866
Geologiya SSSR. [Geology of the USSR]. Ed. E.A. Kozlovskiy, vol. XVIII. Yakutskaya ASSR. Poleznye iskopaemye. Ed. Yu.V. Arkhipov, Moscow: Nedra, 1979, 411 p.
Grubov L.A., Slavin V.I. Sravnitel`naya ocenka gidrogeologicheskikh usloviy razlichnykh rayonov Yakutskogo artezianskogo basseyna v svyazi s neftegazonosnost`yu [Comparative assessment of the hydrogeological conditions of various areas of the Yakut artesian basin in connection with oil and gas potential]. Gidrogeologicheskie issledovaniya v neftegazonosnykh rayonakh, Leningrad: Izd-vo VNIGRI, 1971, pp. 184-203.
Guryeva O.M., Chuvilin E.M., Moudrakovski I.L., Lu H., Ripmeester J., Istomin V.A. Peculiarities of CO2 sequestration in the permafrost area. EGU, 2010, vol. 12, pp. 5379.
Hinds G., Cooling P., Wain A., Zhou S., Turnbull A. Technical note: measurement of pH in concentrated brines. Corrosion, 2009, vol. 65, pp. 635-638.
IPCC, 2005 - Carbon Dioxide Capture and Storage. Bert Metz, Ogunlade Davidson, Heleen de Coninck, Manuela Loos and Leo Meyer (Eds.). Cambridge University Press, UK, p. 431.
Isahak W.N.R.W., Ramli Z.A.Ch., Hisham M.W.M., Yarmo M.A. The formation of a series of carbonates from carbon dioxide: Capturing and utilization. Renewable and Sustainable Energy Reviews, 2015, vol. 47, pp. 93-106.
Istomin V.A., Yakushev V.S. Gazovye gidraty v prirodnykh usloviyakh [Gas hydrates in natural conditions]. Moscow: Nedra, 1992, 235 p.
Jia B., Tsau J., Barati R. A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel, 2019, vol. 236, pp. 404-427.
Kalacheva L.P., Ivanova I.K., Portnyagin A.S., Rozhin I.I., Argunova K.K., Nikolaev A.I. Determination of the lower boundaries of the natural gas hydrates stability zone in the sub-permafrost levels of the Yakut arch of the Vilyuy syneclise, saturated with bicarbonate-sodium type waters. SOCAR Proceedings, Special Issue, 2021, no. 2, pp. 1-11.
Kim S., Santamarina J.C., Engineered CO2 injection: The use of surfactants for enhanced sweep Efficiency. International Journal of Greenhouse Gas Control, 2014, vol. 20, pp. 324-332.
Kim T.H, Cho J., Lee K.S. Evaluation of CO2 injection in shale gas reservoirs with multi-component transport and geomechanical effects. Appl. Energ., 2017, vol. 190, pp. 1195-1206.
Kimuro H., Kusayanagi T., Yamaguchi F., Ohtsubo K., Morishita M. Basic experimental results of liquid CO2 injection into the deep ocean. IEEE Transactions on Energy Conversion, 1994, vol. 9, no. 4, pp. 732-735.
Korzun A.V., Stoupakova A.V., Kharitonova N.A., Pronina N.V., Makarova E.Yu., Vaytekhovich A.P., Osipov K.O., Lopatin A.Yu., Aseeva A.V., Karpushin M.Yu., Sautkin R.S., Peregudov Yu.D., Bolshakova M.A., Sitar K.A., Redkin A.S. Primenimost' prirodnyh geologicheskih ob"ektov dlya hraneniya, zahoroneniya i utilizacii uglekislogo gaza (obzor) [Applicability of natural geological objects for storage, disposal and utilization of carbon dioxide (review)]. Georesursy, 2023, issue 25(2), pp. 22-35. DOI: 10.18599/grs.2023.2.2
Lackner K.S., Wendt С.S., Butt D.P., Sharp D.H., Joyce E.L. Carbon dioxide disposal in carbonate minerals. Energy, 1995, vol. 20(11), pp. 1153-1170.
Li X., Peng Ch., Crawshaw J.P, Maitland G.C., Trusler J.P.M. The pH of CO2-saturated aqueous NaCl and NaHCO3 solutions at temperatures between 308 K and 373 K at pressures up to 15 MPa. Fluid Phase Equilibria, 2018, vol. 458, pp. 253-263.
Luo J., Xie Y., Hou M.Z., Xiong Y., Wua X., Lüddeke C.T., Huang L. Advances in subsea carbon dioxide utilization and storage. Energy Reviews, 2023, vol. 2, 100016. DOI: 10.1016/j.enrev.2023.100016
Mohammadian E., Hadavimoghaddam F., Kheirollahi M., Jafari M., Chenlu X., Liu B. Probing solubility and pH of CO2 in aqueous solutions: Implications for CO2 injection into oceans. Journal of CO2 Utilization, 2023, vol. 71, pp. 102463
Namiot A.Yu. Rastvorimost` gazov v vode [Solubility of gases in water]. Moscow: Nedra, 1991, 167 p.
Osipov A.V., Mustaev R.N., Monakova A.S., Bondareva L.I., Dantsova K.I. Mekhanizmy i varianty utilizatsii i zakhoroneniya uglekislogo gaza v nedrakh [Mechanisms and options of the utilization and burial of carbon dioxide in the earth interior]. Izvestiya vysshikh uchebnykh zavedeniy. Geologiya i razvedka, 2022, issue 64(4), pp. 40-53. DOI: 10.32454/0016-7762-2022-64-4-40-53
Peng C., Crawshaw J.P., Maitland G.C., Trusler J.P.M., Vega-Maza D. The pH of CO2-saturated water at temperature between 308 K and 423 K at pressure up to 15 MPa. J. Supercrit. Fluid, 2013, vol. 82, pp. 129-137.
Pereverzeva S.A., Konosavskiy P.K., Tudvachev A.V., Kharkhordin I.L. Zaxoronenie promyshlennykh vybrosov uglekislogo gaza v geologicheskie struktury [Disposal of carbon dioxide industrial emissions in geological structures]. Vestnik Sankt-Peterburgskogo universiteta, 2014, ser. 7, issue 1, pp. 5-21.
Popov S.N. Proyavlenie mekhaniko-khimicheskikh effektov pri eksperimental`nykh issledovaniyakh izmeneniya uprugikh i fil`tracionno-emkostnykh svoystv porod-kollektorov pod vozdeystviem fil`tracii vody, nasyshhennoy uglekislym gazom [Manifestation of coupled mechanical and chemical effects in experimental studies of the fluid filtration influence on the physical and mechanical properties of carbonate reservoirs]. Aktual`nye problemy nefti i gaza, 2021, issue 2(33), pp. 3-14.
Punnam P.R., Krishnamurthy B., Surasani V.K. Investigations of Structural and Residual Trapping Phenomena during CO2 Sequestration in Deccan Volcanic Province of the Saurashtra Region, Gujarat. International Journal of Chemical Engineering, 2021, ID 7762127, 16 p. DOI: 10.1155/2021/7762127
Rehman A.N., Pendyala R., Lal B. Effect of brine on the kinetics of Carbon dioxide hydrate formation and dissociation in porous media. Materials Today: Proceedings, 2021, vol. 47, pp. 1366-1370. DOI: 10.1016/j.matpr.2021.04.024
Sloan E.D., Koh C.A. Clathrate hydrates of natural gases. Boca Raton: Taylor&Francis Group/CRC Press, 2007, 752 p.
Soong Y., Jones J.R., Hedges S.W., Harrison D.K., Knoer J.P. CO2 sequestration using brines. Prepr. Pap, Am. Chem. Soc., Div. Fuel. Chem., 2002, vol. 47(1), pp. 43-44.
Spravochnik khimika: v 7 t. [Сhemist's reference book; in 7 vol.]. Gl. ed. B.P. Nikol`skiy, 2-e izd., pererab. i dopoln., Moscow-Leningrad: Khimiya, 1965, vol. 3: Khimicheskoe ravnovesie i kinetika. Svoystva rastvorov. Elektrodnye process, 1008 p.
Steffansson A., Benezeth P., Schott J. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200 C-A potentiometric and spectrophotometric study. Geochim. Cosmochim. Acta, 2013, vol. 120, pp. 600-611.
Truche L., Bazarkina E.F., Berger G., Caumon M.-C., Bessaque G., Dubessy J. Direct measurement of CO2 solubility and pH in NaCl hydrothermal solutions by combining in-situ potentiometry and Raman spectroscopy up to 280 C and 150 bar. Geochimica et Cosmochimica Acta, 2016, vol. 177, pp. 238-253.
Vody neftyanykh i gazovykh mestorozhdeniy SSSR: spravochnik [Waters of oil and gas fields of the USSR]. Ed. L.M. Zor’kina. Moscow: Nedra, 1989, 382 p.
Voronov V.P., Gorodeczkiy E.E., Muratov A.R., Podnek V.E., Grigor`ev B.A. Ravnovesnye svoystva gidrata dvuokisi ugleroda v poristykh sredax [Equilibrium properties of carbon dioxide hydrate in porous media]. Vesti gazovoy nauki, 2014, no. 2(18), pp. 135-149.
Wang L., Kan A.T., Zhang Z., Yan F., Liu Y., Dai Z., Tomson M.B. Field method for determination of bicarbonate alkalinity, in: SPE International Oilfield Scale Conference and Exhibition, Society of Petroleum Engineers, 2014, pp. 1-13. DOI: 10.2118/169758-MS
Yan J., Zhang Z. Carbon Capture, Utilization and Storage (CCUS). Appl. Energ., 2019, vol. 235, pp. 1289-1299.
Yang S.H.B., Babu P., Chua S.F.S., Linga P. Carbon dioxide hydrate kinetics in porous media with and without salts. Applied Energy, 2016, vol. 162, pp. 1131-1140. DOI: 10.1016/j.apenergy.2014.11.052
Zhang X., Li J., Wu Q., Wang C., Nan J. Experimental study on the effect of pore size on carbon dioxide hydrate formation and storage in porous media. Journal of Natural Gas Science and Engineering, 2015, vol. 25, pp. 297-302. DOI: 10.1016/j.jngse.2015.05.014
Zhang X., Li P., Yuan Q., Li J., Shan T., Wu Q., Wang Y. A comprehensive review of the influence of particle size and pore distribution on the kinetics of CO2 hydrate formation in porous media. Greenhouse Gases: Science and Technology, 2023, Early View, pp. 1-17. DOI: 10.1002/ghg.2239
Zheleznyak M.N., Semenov V.P. Geotemperaturnoe pole i kriolitozona Vilyujskoy sineklizy [Geotemperature field and permafrost zone of the Vilyuy syneclise]. Novosibirsk: Izd-vo SO RAN, 2020, 123 p.
Article # 35_2022 | submitted on 09/30/2022 displayed on website on 10/14/2022 |
18 p. | Portnyagin A.S., Kalacheva L.P., Ivanova I.K. |
Investigation of the natural gas hydrates formation in the systems "stratum water - porous medium - polymer solution" according to the data of differential thermal analysis | |
The article presents the results of studies of thermodynamic and kinetic characteristics of the natural gas hydrates formation in the systems "stratum water - porous medium - polymer solution". Commercially available polymer samples were used in the experiments: polyacrylamide, sodium carboxymethyl cellulose and polyethylene glycol. A solution of calcium chloride with a concentration of 400 g/l served as a model of stratum water, and quartz monodispersed sand was used as a porous medium. It has been established that the calcium chloride solution has a significant effect on the process of the natural gas hydrates formation. It is shown that in all studied systems, except for the models containing the sodium carboxymethyl cellulose solution, the addition of the calcium chloride solution leads to an increase of the supercooling degree of these systems, and there is a direct dependence between the supercooling degree and the concentration of the calcium chloride. The calculation of the kinetic parameters of the hydrate formation in the studied systems showed that the degree of water conversion into hydrate and the rate of hydrate formation are significantly reduced even at low concentrations of calcium chloride. Keywords: natural gas hydrates, polymer solutions, porous media, calcium chloride solution. |
|
article citation | Portnyagin A.S., Kalacheva L.P., Ivanova I.K. Izuchenie protsessov obrazovaniya gidratov prirodnogo gaza v sistemakh «plastovaya voda - poristaya sreda - rastvor polimera» po dannym differentsial'nogo termicheskogo analiza [Investigation of the natural gas hydrates formation in the systems "stratum water - porous medium - polymer solution" according to the data of differential thermal analysis]. Neftegazovaya Geologiya. Teoriya I Praktika, 2022, vol. 17, no. 4, available at: http://www.ngtp.ru/rub/2022/35_2022.html |
DOI | https://doi.org/10.17353/2070-5379/35_2022 |
Aregbe A.G., Sun B., Chen L. Methane hydrate dissociation conditions in high-concentration NaCl/KCl/CaCl2 aqueous solution: experiment and correlation. Journal of Chemical & Engineering Data, 2019, no. 64(7), pp. 2929-2939. DOI: https://doi.org/10.1021/acs.jced.8b01173
Chuvilin E.M., Gur'eva O.M. Eksperimental'noe izuchenie obrazovaniya gidratov SO2 v porovom prostranstve promerzayushchikh i merzlykh porod [Experimental study of the formation of CO2 hydrates in the pore space of freezing and frozen rocks]. Kriosfera Zemli, 2009, vol. XIII, no.3, pp. 70-79.
Chuvilin E.M., Perlova E.V., Makhonina N.A., Yakushev V.S. Fazovye perekhody vody v gazonasyshchennykh gruntakh [Phase transitions of water in gas-saturated soils]. Geologiya i geofizika, 2002, vol. 43, no.7, pp. 685-693.
Dzubaev S.K., Utegaliev S.A., Gazizov A.Sh., Gazizov A.A. Povyshenie nefteotdachi plastov, nasyshchennykh vysokomineralizovannymi plastovymi vodami [Enhanced oil recovery from formations saturated with highly mineralized formation waters]. Vestnik UdGU, 2005, no. 11, pp. 197-210.
Fedorova A.F., Portnyagin A.S. Osobennosti vzaimodeystviya vysokomineralizovannoy plastovoy vody Irelyakhskogo GNM s rastvorami polimerov [Features of the interaction of highly mineralized formation water of the Irelyakh GOF with polymer solutions]. Voda: khimiya i ekologiya, 2011, no. 12(42), pp. 94-97.
Fedorova A.F., Portnyagin A.S. Otsenka effektivnosti primeneniya polimernogo zavodneniya na neftyanykh mestorozhdeniyakh Yugo-Zapadnoy Yakutii [Evaluation of the effectiveness of polymer flooding in the oil fields of Southwestern Yakutia]. Tekhnicheskie nauki - ot teorii k praktike, 2013, no. 17(1), pp. 97-101.
Filimonova I.V., Eder L.V., Nemov V.Yu., Provornaya I.V. Prognoz dobychi nefti v regionakh Vostochnoy Sibiri i Respublike Sakha (Yakutiya) [Forecast of oil production in the regions of Eastern Siberia and the Republic of Sakha (Yakutia)]. Burenie i neft', 2019, no. 7(8), pp. 9-19.
General'naya skhema razvitiya neftyanoy otrasli Rossiyskoy Federatsii na period do 2020 goda: Prikaz Ministerstva energetiki RF ot 6 iyunya 2011 goda №212 [General scheme for the development of the oil industry of the Russian Federation for the period up to 2020]. Ministerstvo Energetiki Rossiyskoy Federatsii. - https://policy.asiapacificenergy.org/sites/default/files/General%20Scheme%20for%20the%20Development%20of%20Gas%20Industry%20until%202030%20%28RU%29.pdf
Gupta P., Sangwai J.S. Formation and dissociation kinetics of methane hydrate in aqueous oilfield polymer solutions (polyacrylamide, xanthan gum, and guar gum) and their performance evaluation as low-dosage kinetic hydrate inhibitors (LDHI). Energy & Fuels, 2019, no. 33(7), pp. 6335-6349. DOI: https://doi.org/10.1021/acs.energyfuels.9b01204
Istomin V.A., Fedulov D.M., Minakov I.I., Kvon V.G., Burakova S.V. Preduprezhdenie gidratoobrazovaniya v prizaboynoy zone plasta pri vysokoy mineralizatsii ostatochnoy vody v kollektore [Prevention of hydrate formation in the bottomhole formation zone with high salinity of residual water in the reservoir]. Nauchno-tekhnicheskiy sbornik «Vesti gazovoy nauki» 2013, no. 4(15), pp. 15-21.
Istomin V.A., Yakushev V.S. Gazovye gidraty v prirodnykh usloviyakh [Gas hydrates in natural conditions]. Moscow: Nedra, 1992, 236 p.
Jokandan E.F., Naeiji P., Varaminian F. The synergism of the binary and ternary solutions of polyethylene glycol, polyacrylamide and Hydroxyethyl cellulose to methane hydrate kinetic inhibitor. Journal of Natural Gas Science and Engineering, 2016, vol. 29, pp. 15-20. DOI: https://doi.org/10.1016/j.jngse.2015.12.016
Kalacheva L.P., Ivanova I.K., Portnyagin A.S. Equilibrium conditions of the natural gas hydrates formation in the pore space of dispersed rocks. IOP Conference Series: Earth and Environmental Science, 2021, vol. 666, no. 4, pp. 042062. DOI: https://doi.org/10.1088/1755-1315/666/4/042062
Kolotushenko L.D., Malinin A.V., Rudakovskaya S.Yu. Izuchenie produktivnykh otlozheniy vendskogo terrigennogo kompleksa na yugo-zapade Yakutii yaderno-magnitnymi metodami [Study of Vendian terrigenous productive accumulations in the south-west of Yakutia by nuclear magnetic methods]. Karotazhnik, 2014, no. 2(236), pp. 18-34.
Linga P., Daraboina N., Ripmeester J.A., Englezos P. Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel. Chemical Engineering Science, 2012, vol. 68, pp. 617-623.
Manakov A.Yu., Pen'kov N.V., Rodionova T.V., Nesterov A.N., Fesenko E.E. Kinetika protsessov obrazovaniya i dissotsiatsii gazovykh gidratov [Kinetics of formation and dissociation of gas hydrates]. Uspekhi khimii, 2017, vol. 86, no. 9, pp. 845-869. DOI: https://doi.org/10.1070/RCR4720
Mech D., Sangwai J.S. Effect of molecular weight of polyethylene glycol (PEG), a hydrate inhibitive water-based drilling fluid additive, on the formation and dissociation kinetics of methane hydrate. Journal of Natural Gas Science and Engineering, 2016, vol. 35, part B, pp. 1441-1452. DOI: https://doi.org/10.1016/j.jngse.2016.06.020
Medvedev V.I., Gushchin P.A., Yakushev V.S., Semenov A.P. Issledovanie vliyaniya stepeni pereokhlazhdeniya pri obrazovanii gidratov metan-propanovoy gazovoy smesi na ravnovesnye usloviya ikh razlozheniya [Investigation of the influence of the degree of supercooling during the formation of methane-propane gas mixture hydrates on the equilibrium conditions of their decomposition]. Khimiya i tekhnologiya topliv i masel, 2015, no. 5(591), pp. 30-36.
Perrin A., Musa O.M., Steed J.W. The chemistry of low dosage clathrate hydrate inhibitors. Chemical society reviews, 2013, no. 42(5), pp. 1996-2015. DOI: https://doi.org/10.1039/C2CS35340G
Portnyagin A.S., Fedorova A.F., Shits E.Yu., Shilova Yu.E. Izuchenie svoystv polimernykh rastvorov i effektivnosti vytesneniya imi nefti v spetsificheskikh usloviyakh mestorozhdeniy Yugo-Zapadnoy Yakutii [Study of the properties of polymer solutions and the efficiency of oil displacement by them in the specific conditions of the fields of South-Western Yakutia]. Nauka i obrazovanie, 2013, no. 2(70), pp. 46-50.
Safronov A.F. Geologiya nefti i gaza [Geology of oil and gas]. Yakutsk: Yakutskiy filial Izd-va SO RAN, 2000, 166 p.
Shits E. Yu., Fedorova A.F., Portnyagin A.S. Eksperimental'noe opredelenie vliyaniya zakachki rastvora PPD na kollektorskie svoystva produktivnykh gorizontov Irelyakhskogo GNM [Experimental determination of the effect of injection of the reservoir pressure fluid on the reservoir properties of the productive levels of the Irelyakh GOF]. Nauka i obrazovanie, 2006, no. 1, pp. 44-48.
Shostak N.A., Zaporozhets E.P. Opredelenie effektivnosti khimicheskikh reagentov dlya preduprezhdeniya obrazovaniya i likvidatsii gazovykh gidratov [Determination of the effectiveness of chemical reagents to prevent the formation and elimination of gas hydrates]. Zhurnal neorganicheskoy khimii, 2020, no. 2, pp. 230-236.
Singh A., Suri A. Enhanced hydrate inhibition using protein synergists with kinetic hydrate inhibitors. Energy & Fuels, 2022, no. 36(17), pp. 10395-10404. DOI: https://doi.org/10.1021/acs.energyfuels.2c02027
Slyusarev N.I. Tekhnologiya i tekhnika povysheniya nefteotdachi plastov [Technology and technique of enhanced oil recovery]. Uchebnoe posobie. St. Petersburg: Izd-vo SPGI, 2003, 78 p.
Tian Y., Li Y., An H., Ren J., Su J. Kinetics of methane hydrate formation in an aqueous solution with and without kinetic promoter (SDS) by spray reactor. Journal of Chemistry, 2017, vol. 5208915, 5 p. DOI: https://doi.org/10.1155/2017/5208915
Toma A., Sayuk B., Abirov Zh., Mazbaev E. Polimernoe zavodnenie dlya uvelicheniya nefteotdachi na mestorozhdeniyakh legkoy i tyazheloy nefti neft [Polymer flooding for enhanced oil recovery in light and heavy oil fields]. Territoriya «NEFTEGAZ», 2017, no. 7(8), pp. 58-67.
Troitskiy V.M., Grigor'ev B.A., Rassokhin S.G., Sokolov A.F., Kovalev A.L., Korchazhkina I.Yu., Fomin E.L., Mizin A.V., Van'kov V.P. Primenenie metodov fizicheskogo i matematicheskogo modelirovaniya dlya otsenki effektivnosti ispol'zovaniya tekhnologii vodogazovogo vozdeystviya na Chayandinskom neftegazokondensatnom mestorozhdenii [Application of physical and mathematical modeling methods to assess the effectiveness of the use of water-gas treatment technology at the Chayanda oil and gas condensate field]. Nauchno-tekhnicheskiy sbornik «Vesti gazovoy nauki», 2018, no. 5(37), pp. 140-155.
Wang R., Sun H., Shi X., Xu X., Zhang L., Zhang Z. Fundamental investigation of the effects of modified starch, carboxymethylcellulose sodium, and xanthan gum on hydrate formation under different driving forces. Energies, 2019, no.12, pp. 20-26. DOI: https://doi.org/10.3390/en12102026
Zaporozhets E.P., Shostak N.A. Teoreticheskie aspekty kinetiki gazovykh gidratov [Theoretical aspects of the kinetics of gas hydrates]. Zapiski Gornogo instituta, 2014, vol. 210, pp. 11-20.
Article # 42_2018 | submitted on 10/04/2018 displayed on website on 11/30/2018 |
16 p. | Kalacheva L.P., Rozhin I.I., Sivtsev A.I. |
Studying the possibility of hydratе formation and salt deposition in the bottom hole of wells of Chayanda oil-gas-condensate field | |
The actual problems of development of the Chayanda oil-gas-condensate field, related to the features of the geological characteristics of productive horizons and reservoir fluids, are considered. To compile recommendations for reducing the risks of natural gas production, the probability of hydrate formation and salt depositions is estimated using the example of the botuobinsky productive horizon. The equilibrium conditions of hydrate formation are calculated based on the physicochemical properties of formation fluids. It is concluded that in the development and exploitation of the Chayanda oil-gas-condensate field due to an abnormally low reservoir temperature, in spite of the high mineralization of the formation water, it is possible to form gas hydrates. The minimum concentrations of a calcium chloride solution and a water-methanol solution that prevent hydrate formation at a characteristic reservoir temperature are determined. It is established that an increase in the mineralization of calcium chloride solutions leads to the concentration in the clathrate phase of C2-C4 hydrocarbons and to an increase the fat coefficient of gas. It is shown that mixing of highly mineralized formation waters with a water-methanol solution can lead to salt depositions in the bottom hole zone of wells. Keywords: natural gas, hydrate formation, stratum water, mineralization, water-methanol solution, salt deposition, Chayanda oil-gas-condensate field, Nepа-Botuoba anteclise. |
|
article citation | Kalacheva L.P., Rozhin I.I., Sivtsev A.I. Izuchenie vozmozhnosti gidratoobrazovaniya i soleotlozheniya v prizaboynoy zone skvazhin Chayandinskogo neftegazokondensatnogo mestorozhdeniya [Studying the possibility of hydratе formation and salt deposition in the bottom hole of wells of Chayanda oil-gas-condensate field]. Neftegazovaya Geologiya. Teoriya I Praktika, 2018, vol. 13, no. 4, available at: http://www.ngtp.ru/rub/2018/42_2018.html |
DOI | https://doi.org/10.17353/2070-5379/42_2018 |
Geologiya i neftegazovyy potentsial yugo-zapada Yakutii realii i perspektivy [Geology and oil and gas potential of the south-west of Yakutia: realities and prospects] V.S. Sitnikov, I.A. Burova, I.A. Kushmar, T.K. Bazhenova, I.A. Burova, V.P. Semenov, T.D. Shibina, K.V. Shostak, L.K. Yashenkova / Pod red. V.S. Sitnikova i O.M. Prishchepy. St Petersburg, FGUP VNIGRI, 2014, 436 p.
Geologo-ekonomicheskie aspekty razvitiya neftegazovogo kompleksa Respubliki Saha Yakutiya [Geological and economic aspects of the development of the oil and gas complex of the Republic of Sakha (Yakutia)] A.F. Safronov, T.A. Safronov. Yakutsk, Izd-vo YaNTs SO RAN, 2008, 184 p.
Kalacheva L.P., Fedorova A.F., Portnyagin A.S. Izuchenie vliyaniya mineralizatsii modelnoy plastovoy vody hlor-kaltsievogo tipa na protsessy obrazovaniya i razlozheniya gidratov prirodnogo gaza [Study of the influence of mineralization of model formation water of chlorine-calcium type on the processes of formation and decomposition of natural gas hydrates]. International Journal of Applied and Fundamental Research, 2016, no. 6-4, p. 719–722.
Kalacheva L.P., Rozhin I.I. Vliyanie sostava vod khloridno-kal'tsievogo tipa na svoystva gidratov prirodnogo gaza [The influence of the chloride-calcium-type water composition on the properties of natural gas hydrates]. Neftegazovaya Geologiya. Teoriya i Praktika, 2017, vol. 12, no. 3, available at: http://www.ngtp.ru/rub/9/25_2017.pdf. DOI: https://doi.org/10.17353/2070-5379/25_2017
Kalacheva L.P., Rozhin I.I., Fedorova A.F. Izuchenie zavisimosti protsessov obrazovaniya i razlozheniya gidratov prirodnogo gaza ot himicheskoy prirody rastvorov elektrolitov imitiruyushchih plastovye flyuidy [The study of the dependence of the processes of formation and decomposition of natural gas hydrates on the chemical nature of solutions of electrolytes simulating formation fluids]. International Journal of Applied and Fundamental Research, 2016, no. 8 (Part 4), p. 565–569.
Kalacheva L.P., Rozhin I.I., Fedorova А.F. Izuchenie vliyaniya mineralizatsii plastovoy vody na protsess gidratoobrazovaniya prirodnyh gazov mestorozhdeniy vostoka Sibirskoy platformy [The study of the stratum water mineralization influence on the hydrate formation process of the natural gas from the East Siberian platform fields]. SOCAR Proceedings, 2017, no.2, p. 56–61.
Pirogov S.Yu., Akulov L.А., Vedernikov М.V., Kirillov N.G., Naumchik I.V., Sokolova I.V., Sof’in А. P. Prirodnyy gaz. Metan: Spravochnik [Natural gas. Methane: handbook]. St Petersburg, NGO Professional, 2006, 848 p.
Preduprezhdenie i likvidatsiya gazovyh gidratov v sistemah dobychi gaza [Prevention and Elimination of Gas Hydrates in Gas Production Systems]. V.A. Istomin, V.G. Kvon. Moscow: “IRTs Gazprom”, 2004, 509 p.
Safronov A.F. Geologiya nefti i gaza [Geology of oil and gas]. Yakutsk, YAF Izd-va SO RAN, 2000, 166 p.
Sloan E.D., Koh C.A. Clathrate hydrates of natural gases. Boca Raton: Taylor&Francis Group/CRC Press, 2008, 720 p.
Spravochnik himika. V 7 ch. Tom 3. Himicheskoe ravnovesie i kinetika. Svoystva rastvorov. Elektrodnye protsessy [Chemical Handbook. At 7 hours. Volume 3. Chemical equilibrium and kinetics. Properties of solutions. Electrode processes]. Pod red. B.P. Nikolskogo, V.A. Rabinovicha. Moscow-Leningrad, Himiya, 1965, 1005 p.
Spravochnik po rastvorimosti. V 3 ch. Tom II. Troynye i mnogokomponentnye sistemy. Kniga 2 [Handbook of Solubility. At 3 hours. Volume II. Triple and multicomponent systems. Book 2]. V.B. Kogan, V.M. Fridman, V.V. Kafarov. Moscow-Leningrad, Izd-vo AN SSSR, 1963, 1122 p.
Troitsky V.M., Sokolov A.F., Istomin V.A., Rassokhin S.G., Vankov V.P., Mizin A.V., Alemanov A.E. Fizicheskoe modelirovanie protsessov gidratoobrazovaniya v rezhime filtratsii prirodnogo gaza v porovoy srede Chayandinskogo neftegazokondensatnogo mestorozhdeniya [Physical modeling of the hydrate formation processes in the regime of natural gas filtration in the porous environment of the Chayandinskoye field] Vesti gazovoy nauki: Aktualnye voprosy issledovaniy plastovyh sistem mestorozhdeniy uglevodorodov. Moscow, Gazprom VNIIGAZ, 2015, no. 4(24), p. 99-109.
Vody neftyanyh i gazovyh mestorozhdeniy SSSR: Spravochnik [Waters of oil and gas fields of the USSR]. Pod red. L.M. Zor’kina. Moscow, Nedra, 1989, 382 p.
Article # 25_2017 | submitted on 05/22/2017 displayed on website on 07/07/2017 |
13 p. | Kalacheva L.P., Rozhin I.I. |
The influence of the chloride-calcium-type water composition on the properties of natural gas hydrates | |
The properties of natural gas hydrates obtained from mineralized solutions of chloride-calcium type of different composition were investigated. It is established that, depending on the type of prevailing cation in the solution, the thermodynamic conditions of hydrate formation, the gas content of hydrates, their texture, the component composition of the gas in the solid phase are changed. During hydrate formation, a dry natural gas is converted to a fatty gas with a higher calorific value. The study of dissociation processes of hydrates showed an increase of the decomposition rate of hydrates obtained in electrolytes solutions.
Keywords: natural gas hydrates, mineralization of stratum waters, hydrate formation, gas content of hydrates, component composition of gas-hydrate-forming agent, hydrate texture, kinetics of hydrate decomposition. |
|
article citation | Kalacheva L.P., Rozhin I.I. Vliyanie sostava vod khloridno-kal'tsievogo tipa na svoystva gidratov prirodnogo gaza [The influence of the chloride-calcium-type water composition on the properties of natural gas hydrates]. Neftegazovaya Geologiya. Teoriya I Praktika, 2017, vol. 12, no. 3, available at: http://www.ngtp.ru/rub/9/25_2017.pdf |
DOI | https://doi.org/10.17353/2070-5379/25_2017 |
|