Трудноизвлекаемые запасы, нетрадиционные источники углеводородного сырья
Статья № 39_2024 дата поступления в редакцию 07.10.2024 подписано в печать 16.12.2024
27 с.
Температурное растрескивание – ключевой параметр проницаемости горных пород
*Статья представлена на английском языке.

Рассмотрены различные подходы к вопросам температурного растрескивания и увеличения проницаемости горных пород, которые являются важными параметрами, контролирующими их флюидопропускную способность. Непроницаемые горные породы (магматические породы, гнейс, кварцевый песчаник и прочие) подвергаются термодеформациям при захоронении («йо-йо тектоника» с несколькими циклами погружения и воздымания в различных тектонических обстановках, таких как ороген, коллизионный ороген, область сдвига, задуговая депрессия, задуговой рифт и межконтинентальный рифт), когда достигаются температуры, превышающие 350-4000C. В таком температурном диапазоне метаморфизм температурного растрескивания пород может стать очень активным. На этой стадии воздействие на горную породу может увеличить значение проницаемости до характерного для полупроницаемых пород. Так в процессе воздымания в захороненной породе начинается процесс адаптации к новым PT-условиям (процесс аналогичный ретроморфизму). Поскольку процесс подобный ретроморфизму редко бывает полным и очевидным, некоторые типы пород на первый взгляд могут быть отнесены к классу непроницаемых. Эти же породы при лабораторных исследованиях, выполненных, например, в ходе разведки месторождений углеводородов, соответствуют классу полупроницаемых.

Ключевые слова: проницаемость, температурное растрескивание горных пород, «йо-йо тектоника», аналог ретроморфизма, полупроницаемая горная порода.
ссылка на статью обязательна Morariu D., Averyanova O.Yu. Thermal cracking - key parameter for increasing rock permeability // Нефтегазовая геология. Теория и практика. - 2024. - Т.19. - №4. - https://www.ngtp.ru/rub/2024/39_2024.html EDN: SXHRPQ
Литература
Bauer S.J., Johnson B. Effects of slow uniform heating on the physical properties of the westerly and charcoal granites. In: 20th U.S. Symposium on Rock Mechanics (USRMS) (4-6 June 1979, Austin, Texas). - https://www.onepetro.org/conference-paper/ARMA-79-0007
Bear J. Dynamics of fluids in porous media. New York: Dover, 1988. - 764 p.
Brace W.F., Walsh J.B., Frangos W.T. Permeability of granite under high pressure // Journal of Geophysical Research. - 1968. - Vol. 73. - Issue 6. - P. 2225-2236. DOI: 10.1029/JB073i006p02225
Brace W.F. Permeability of crystalline rocks: New in situ measurements // Journal of Geophysical Research: Solid Earth. - 1984. - Vol. 89. - Issue B6. - P. 4327-4330. DOI: 10.1029/JB089iB06p04327
Caine J.S., Evans J.P., Forster C.B. Fault zone architecture and permeability structure // Geology. - 1996. - Vol. 18. - P. 1025-1028. DOI: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
Chen X., Wang Y., Meng X., Chen K., Su J. Experimental measurement of oil shale permeability and its influence on in-situ upgrading // IOP Conference Series: Earth and Environmental Science (14-15 November 2020, Shenyang City, China). 3rd International Conference on Green Energy and Sustainable Development. - 2021. - No. 651. - 032095. DOI: 10.1088/1755-1315/651/3/032095
Chen Y., Wu X., Zhang F. Experiments on thermal fracture in rocks // Chinese Science Bulletin. - 1999. - Vol. 44. - P. 1610-1612. DOI: 10.1007/BF02886103
Dou L., Wen Z. Classification and exploration potential of sedimentary basins based on the superposition and evolution process of prototype basins // Petroleum Exploration and Development. - 2021. - Vol. 48. - P. 1271-1288. DOI: 10.1016/S1876-3804(21)60286-0
Evans J.P., Forster C.B., Goddard J.V. Permeability of fault-related rocks, and implications for hydraulic structure of fault zones // Journal of Structural Geology. - 1997. - Vol. 19 - Issue 11. - P. 1393-1404. DOI: 10.1016/S0191-8141(97)00057-6
Fan L.F., Gao J.W., Wu Z.J., Yang S.Q., Ma G.W. An investigation of thermal effects on micro-properties of granite by X-ray CT technique // Applied Thermal Engineering. - 2018. - Vol. 140. - P. 505-519. DOI: 10.1016/j.applthermaleng.2018.05.074
Feng Z., Zhao Y., Zhang Y., Wan Z. Real-time permeability evolution of thermally cracked granite at triaxial stresses // Applied Thermal Engineering. - 2018. - Vol. 133. - P. 194-200. DOI: 10.1016/j.applthermaleng.2018.01.037
Ge Z., Sun Q., Li W. Temperature and pressure effect on permeability of Chinese sandstone: A review // Acta Geodyn. Geomater. - 2018. - Vol. 15. - No. 3 (191). - P. 289-296. DOI: 10.13168/AGG.2018.0021
Ingebritsen S.E., Gleeson T. Crustal permeability: introduction to the special issue // Geofluids. - 2015. - Vol. 15. - P. 1-10. DOI: https://doi.org/10.1111/gfl.12118
Jiang G., Zuo J.P., Li L., Ma T., Wei X. The Evolution of cracks in Maluanshan granite subjected to different temperature processing // Rock Mechanics and Rock Engineering. - 2018. - Vol. 51. - P. 1683-1695. DOI: 10.1007/s00603-018-1403-7
Kang Z., Yang D., Zhao Y., Hu Y. Thermal cracking and corresponding permeability of Fushun oil shale // Oil Shale. - 2011. - Vol. 28. - Issue 2. - P. 273-283. DOI: 10.3176/oil.2011.2.02
Le Ravalec M., Gueguen Y. Permeability models for heated saturated igneous rocks // Journal of Geophysical Research: Solid Earth. - 1994. - Vol. 99. - Issue B12. - P. 24251-24261. DOI: 10.1029/94JB02124
Liu J., Li B., Tian W., Wu X. Investigating and predicting permeability variation in thermally cracked dry rocks // International Journal of Rock Mechanics and Mining Sciences. - March 2018. - Vol. 103. - P. 77-88. DOI: 10.1016/j.ijrmms.2018.01.023
Liu J., Wang Z., Shi W., Tan X. Experiments on the thermally enhanced permeability of tight rocks: A potential thermal stimulation method for Enhanced Geothermal Systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. - 2020. - P. 1-14. DOI: 10.1080/15567036.2020.1745332
Loucks R.G., Reed R.M., Ruppel S.C., Hammes U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrocks pores // AAPG Bulletin. - 2012. - Vol. 96. - No. 6. - P. 1071-1098. DOI: 10.1306/08171111061
Meng X., Liu W., Meng T. Experimental investigation of thermal cracking and permeability evolution of granite with varying initial damage under high temperature and triaxial compression // Advances in Materials Science and Engineering. - 2018. - P. 1-9. DOI: 10.1155/2018/8759740
Morariu D. Issledovanie skopleniy uglevodorodov v porodakh fundamenta [Contribution to hydrocarbon occurrence in basement rocks]. Neftegazovaya Geologiya. Teoriya I Praktika, 2012, vol. 7, no. 3, available at: http://www.ngtp.ru/rub/9/51_2012.pdf
Nelson P.H. Pore-throat sizes in sandstones, tight sandstones, and shales // AAPG Bulletin. - 2009. - Vol. 93. - No. 3. - P. 329-340. DOI: 10.1306/10240808059
Ni H.Y., Liu J.F., Chen X., Wang Y.G., Pu H., Mao X.B. Macroscopic and microscopic study on gas permeability characteristics of tight sandstone under temperature-stress coupling // 5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future, Okinawa, Japan. - December 2019. - ISRM-YSRM-2019-152.
Qian Y., Jing H., Haijian S.U., Zhu T. Loading rate effect on fracture properties of granite after high temperature // J. China Univ. Min. Tech. - 2015. - Vol. 44. - 4. - P. 597-603.
Siratovich P.A., Villeneuve M.S., Cole J.W., Kennedy B.M., Bégué F. Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs // International Journal of Rock Mechanics and Mining Sciences. - 2015. - Vol. 80. - P. 265-280. DOI: 10.1016/j.ijrmms.2015.09.023
Somerton W.H., Gupta V.S. Role of fluxing agents in thermal alteration of sandstones // Journal Petroleum Technology. - 1964. - Vol. 17. - Issue 05. - P. 585-588. DOI: 10.2118/1039-PA
Tanikawa W., Sakaguchi M., Tadai O., Hirose T. Influence of fault slip rate on shear‐induced permeability // Journal of Geophysical Research: Solid Earth. - 2010. - Vol. 115 (B7). DOI: 10.1029/2009JB007013
Uehara S.I., Shimamoto T. Gas permeability evolution of cataclasite and fault gouge in triaxial compression and implications for changes in fault-zone permeability structure through the earthquake cycle // Tectonophysics. - 2004. - Vol. 378. - Issue 3-4. - P. 183-195. DOI: 10.1016/j.tecto.2003.09.007
Whitney D.L., Umhoefer P.J., Teyssier. C., Fayon A.K. Yo-yo tectonics of the Niǧde Massif during wrenching in Central Anatolia // Turkish Journal of Earth Sciences. - 2008. - Vol. 17. - No. 2. - P. 209-217.
Wibberley C., Yielding G., Di Toro G. Recent advances in the understanding of fault zone internal structure: a review. Geological Society, London, Special Publications. - 2008. - Vol. 299. - P. 5-33. DOI: 10.1144/SP299.2
Zhang H., Wang D., Yu C., Wei J., Liu S., Fu J. Microcrack evolution and permeability enhancement due to thermal shocks in coal // PLoS ONE. - 2020. - 15(5): e0232182. DOI: 10.1371/journal.pone.0232182
Zengchao F., Yangsheng Z., Zhang Y., Wan Z. Critical temperature of permeability change in thermally cracked granite. Meitan Xuebao // Journal of the China Coal Society. - 2014. - 39. - P. 1987-1992. DOI: 10.13225/j.cnki.jccs.2013.1359
Zuo J.P., Xie H.P., Zhou H.W., Peng S.P. SEM in situ investigation on thermal cracking behaviour of Pingdingshan sandstone at elevated temperatures // Geophysical Journal International. - May 2010. - Vol. 181. - Issue 2. - P. 593-603. DOI: 10.1111/j.1365-246X.2010.04532.x